List of set identities and relations

From HandWiki
Short description: Equalities for combinations of sets

This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

The binary operations of set union () and intersection () satisfy many identities. Several of these identities or "laws" have well established names.

Notation

Throughout this article, capital letters (such as A,B,C,L,M,R,S, and X) will denote sets. On the left hand side of an identity, typically,

  • L will be the Left most set,
  • M will be the Middle set, and
  • R will be the Right most set.

This is to facilitate applying identities to expressions that are complicated or use the same symbols as the identity.[note 1] For example, the identity (LM)R=(LR)(MR) may be read as: (Left setMiddle set)Right set=(Left setRight set)(Middle setRight set).

Elementary set operations

For sets L and R, define: LR=def{x:xL or xR}LR=def{x:xL and xR}LR=def{x:xL and xR} and LR=def{x:x belongs to exactly one of L and R} where the symmetric difference LR is sometimes denoted by LR and equals:[1][2] LR=(LR)(RL)=(LR)(LR).

One set L is said to intersect another set R if LR. Sets that do not intersect are said to be disjoint.

The power set of X is the set of all subsets of X and will be denoted by (X)=def{L:LX}.

Universe set and complement notation

The notation L=defXL. may be used if L is a subset of some set X that is understood (say from context, or because it is clearly stated what the superset X is). It is emphasized that the definition of L depends on context. For instance, had L been declared as a subset of Y, with the sets Y and X not necessarily related to each other in any way, then L would likely mean YL instead of XL.

If it is needed then unless indicated otherwise, it should be assumed that X denotes the universe set, which means that all sets that are used in the formula are subsets of X. In particular, the complement of a set L will be denoted by L where unless indicated otherwise, it should be assumed that L denotes the complement of L in (the universe) X.

One subset involved

Assume LX.

Identity:[3]

Definition: e is called a left identity element of a binary operator if eR=R for all R and it is called a right identity element of if Le=L for all L. A left identity element that is also a right identity element if called an identity element.

The empty set is an identity element of binary union and symmetric difference , and it is also a right identity element of set subtraction :

LX=L=XL where LXL=L=LL=L=LL=L but is not a left identity element of since L= so L=L if and only if L=.

Idempotence[3] LL=L and Nilpotence LL=:

LL=L (Idempotence)LL=L (Idempotence)LL= (Nilpotence of index 2)LL= (Nilpotence of index 2)

Domination[3]/Zero element:

XL=X=LX where LXL==L×L==L×L= but L=L so L= if and only if L=.

Double complement or involution law:

X(XL)=L Also written (L)=L where LX (Double complement/Involution law)

L=L =LL=L=LX where LX[3]

L=XL (definition of notation)

L(XL)=X Also written LL=X where LXL(XL)=X Also written LL=X where LXL(XL)= Also written LL=[3]

X=X Also written =X (Complement laws for the empty set))XX= Also written X= (Complement laws for the universe set)

Two sets involved

In the left hand sides of the following identities, L is the Left most set and R is the Right most set. Assume both L and R are subsets of some universe set X.

Formulas for binary set operations ⋂, ⋃, \, and ∆

In the left hand sides of the following identities, L is the Left most set and R is the Right most set. Whenever necessary, both L and R should be assumed to be subsets of some universe set X, so that L:=XL and R:=XR.

LR=L(LR)=R(RL)=L(LR)=L(LR)

LR=(LR)L=(LR)(LR)=(RL)L (union is disjoint)

LR=RL=(LR)(LR)=(LR)(RL) (union is disjoint)=(LM)(MR) where M is an arbitrary set. =(L)(R)

LR=L(LR)=L(LR)=L(LR)=R(LR)

De Morgan's laws

De Morgan's laws state that for L,RX:

X(LR)=(XL)(XR) Also written (LR)=LR (De Morgan's law)X(LR)=(XL)(XR) Also written (LR)=LR (De Morgan's law)

Commutativity

Unions, intersection, and symmetric difference are commutative operations:[3]

LR=RL (Commutativity)LR=RL (Commutativity)LR=RL (Commutativity)

Set subtraction is not commutative. However, the commutativity of set subtraction can be characterized: from (LR)(RL)= it follows that: LR=RL if and only if L=R. Said differently, if distinct symbols always represented distinct sets, then the only true formulas of the form = that could be written would be those involving a single symbol; that is, those of the form: SS=SS. But such formulas are necessarily true for every binary operation (because xx=xx must hold by definition of equality), and so in this sense, set subtraction is as diametrically opposite to being commutative as is possible for a binary operation. Set subtraction is also neither left alternative nor right alternative; instead, (LL)R=L(LR) if and only if LR= if and only if (RL)L=R(LL). Set subtraction is quasi-commutative and satisfies the Jordan identity.

Other identities involving two sets

Absorption laws:

L(LR)=L (Absorption)L(LR)=L (Absorption)

Other properties

LR=L(XR) Also written LR=LR where L,RXX(LR)=(XL)R Also written (LR)=LR where RXLR=(XR)(XL) Also written LR=RL where L,RX

Intervals:

(a,b)(c,d)=(max{a,c},min{b,d}) [a,b)[c,d)=[max{a,c},min{b,d})

Subsets ⊆ and supersets ⊇

The following statements are equivalent for any L,RX:[3]

  1. LR
    • Definition of subset: if lL then lR
  2. LR=L
  3. LR=R
  4. LR=RL
  5. LRRL
  6. LR=
  7. L and XR are disjoint (that is, L(XR)=)
  8. XRXL (that is, RL)

The following statements are equivalent for any L,RX:

  1. L⊈R
  2. There exists some lLR.

Set equality

The following statements are equivalent:

  1. L=R
  2. LR=
  3. LR=RL
  • If LR= then L=R if and only if L==R.
  • Uniqueness of complements: If LR=X and LR= then R=XL
Empty set

A set L is empty if the sentence x(x∉L) is true, where the notation x∉L is shorthand for ¬(xL).

If L is any set then the following are equivalent:

  1. L is not empty, meaning that the sentence ¬[x(x∉L)] is true (literally, the logical negation of "L is empty" holds true).
  2. (In classical mathematics) L is inhabited, meaning: x(xL)
    • In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set L that is not empty (where by definition, "L is empty" means that the statement x(x∉L) is true) might not have an inhabitant (which is an x such that xL).
  3. L⊈R for some set R

If L is any set then the following are equivalent:

  1. L is empty (L=), meaning: x(x∉L)
  2. LRR for every set R
  3. LR for every set R
  4. LRL for some/every set R
  5. /L=L

Given any x, x∉LR if and only if xLR or x∉L.

Moreover, (LR)R= always holds.

Meets, Joins, and lattice properties

Inclusion is a partial order: Explicitly, this means that inclusion , which is a binary operation, has the following three properties:[3]

The following proposition says that for any set S, the power set of S, ordered by inclusion, is a bounded lattice, and hence together with the distributive and complement laws above, show that it is a Boolean algebra.

Existence of a least element and a greatest element: LX

Joins/supremums exist:[3] LLR

The union LR is the join/supremum of L and R with respect to because:

  1. LLR and RLR, and
  2. if Z is a set such that LZ and RZ then LRZ.

The intersection LR is the join/supremum of L and R with respect to .

Meets/infimums exist:[3] LRL

The intersection LR is the meet/infimum of L and R with respect to because:

  1. if LRL and LRR, and
  2. if Z is a set such that ZL and ZR then ZLR.

The union LR is the meet/infimum of L and R with respect to .

Other inclusion properties:

LRL (LR)L=LR

  • If LR then LR=RL.
  • If LX and RY then L×RX×Y[3]

Three sets involved

In the left hand sides of the following identities, L is the Left most set, M is the Middle set, and R is the Right most set.

Precedence rules

There is no universal agreement on the order of precedence of the basic set operators. Nevertheless, many authors use precedence rules for set operators, although these rules vary with the author.

One common convention is to associate intersection LR={x:(xL)(xR)} with logical conjunction (and) LR and associate union LR={x:(xL)(xR)} with logical disjunction (or) LR, and then transfer the precedence of these logical operators (where has precedence over ) to these set operators, thereby giving precedence over . So for example, LMR would mean L(MR) since it would be associated with the logical statement LMR=L(MR) and similarly, LMRZ would mean L(MR)Z since it would be associated with LMRZ=L(MR)Z.

Sometimes, set complement (subtraction) is also associated with logical complement (not) ¬, in which case it will have the highest precedence. More specifically, LR={x:(xL)¬(xR)} is rewritten L¬R so that for example, LMR would mean L(MR) since it would be rewritten as the logical statement LM¬R which is equal to L(M¬R). For another example, because L¬MR means L(¬M)R, which is equal to both (L(¬M))R and L((¬M)R)=L(R(¬M)) (where (¬M)R was rewritten as R(¬M)), the formula LMR would refer to the set (LM)R=L(RM); moreover, since L(¬M)R=(LR)¬M, this set is also equal to (LR)M (other set identities can similarly be deduced from propositional calculus identities in this way). However, because set subtraction is not associative (LM)RL(MR), a formula such as LMR would be ambiguous; for this reason, among others, set subtraction is often not assigned any precedence at all.

Symmetric difference LR={x:(xL)(xR)} is sometimes associated with exclusive or (xor) LR (also sometimes denoted by ), in which case if the order of precedence from highest to lowest is ¬,,, then the order of precedence (from highest to lowest) for the set operators would be ,,,. There is no universal agreement on the precedence of exclusive disjunction with respect to the other logical connectives, which is why symmetric difference is not often assigned a precedence.

Associativity

Definition: A binary operator is called associative if (LM)R=L(MR) always holds.

The following set operators are associative:[3]

(LM)R=L(MR)(LM)R=L(MR)(LM)R=L(MR)

For set subtraction, instead of associativity, only the following is always guaranteed: (LM)RL(MR) where equality holds if and only if LR= (this condition does not depend on M). Thus (LM)R=L(MR) if and only if (RM)L=R(ML), where the only difference between the left and right hand side set equalities is that the locations of L and R have been swapped.

Distributivity

Definition: If  and  are binary operators then left distributes over if L(MR)=(LM)(LR) for all L,M,R while right distributes over if (LM)R=(LR)(MR) for all L,M,R. The operator distributes over if it both left distributes and right distributes over . In the definitions above, to transform one side to the other, the innermost operator (the operator inside the parentheses) becomes the outermost operator and the outermost operator becomes the innermost operator.

Right distributivity:[3]

(LM)R=(LR)(MR) (Right-distributivity of  over )(LM)R=(LR)(MR) (Right-distributivity of  over )(LM)R=(LR)(MR) (Right-distributivity of  over )(LM)R=(LR)(MR) (Right-distributivity of  over )(LM)R=(LR)(MR) (Right-distributivity of  over )(LM)×R=(L×R)(M×R) (Right-distributivity of × over )(LM)×R=(L×R)(M×R) (Right-distributivity of × over )(LM)×R=(L×R)(M×R) (Right-distributivity of × over )(LM)R=(LR)(MR) (Right-distributivity of  over )(LM)R=(LR)(MR) (Right-distributivity of  over )(LM)R=(LR)(MR) (Right-distributivity of  over )(LM)R=(LR)(MR) (Right-distributivity of  over )=L(MR)

Left distributivity:[3]

L(MR)=(LM)(LR) (Left-distributivity of  over )L(MR)=(LM)(LR) (Left-distributivity of  over )L(MR)=(LM)(LR) (Left-distributivity of  over )L(MR)=(LM)(LR) (Left-distributivity of  over )L(MR)=(LM)(LR) (Left-distributivity of  over )L×(MR)=(L×M)(L×R) (Left-distributivity of × over )L×(MR)=(L×M)(L×R) (Left-distributivity of × over )L×(MR)=(L×M)(L×R) (Left-distributivity of × over )

Distributivity and symmetric difference ∆

Intersection distributes over symmetric difference: L(MR)=(LM)(LR) (LM)R=(LR)(MR)

Union does not distribute over symmetric difference because only the following is guaranteed in general: L(MR)(LM)(LR)=(MR)L=(ML)(RL)

Symmetric difference does not distribute over itself: L(MR)(LM)(LR)=MR and in general, for any sets L and A (where A represents MR), LA might not be a subset, nor a superset, of L (and the same is true for A).

Distributivity and set subtraction \

Failure of set subtraction to left distribute:

Set subtraction is right distributive over itself. However, set subtraction is not left distributive over itself because only the following is guaranteed in general: L(MR)(LM)(LR)=LRM where equality holds if and only if LM=LR, which happens if and only if LMR= and LMR.

For symmetric difference, the sets L(MR) and (LM)(LR)=L(MR) are always disjoint. So these two sets are equal if and only if they are both equal to . Moreover, L(MR)= if and only if LMR= and LMR.

To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: (LM)(LR)=L(MR)L(MR)=(LM)(LR) always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict). Equality holds if and only if L(MR)L(MR), which happens if and only if LM=LR.

This observation about De Morgan's laws shows that is not left distributive over or because only the following are guaranteed in general: L(MR)(LM)(LR)=L(MR) L(MR)(LM)(LR)=L(MR) where equality holds for one (or equivalently, for both) of the above two inclusion formulas if and only if LM=LR.

The following statements are equivalent:

  1. LM=LR
  2. LM=LR
  3. L(MR)=(LM)(LR); that is, left distributes over for these three particular sets
  4. L(MR)=(LM)(LR); that is, left distributes over for these three particular sets
  5. L(MR)=L(MR)
  6. L(MR)=LMR
  7. L(MR)MR
  8. LRM and LMR
  9. L(MR)=L(RM)
  10. L(MR)=L(RM)=L

Quasi-commutativity: (LM)R=(LR)M (Quasi-commutative) always holds but in general, L(MR)L(RM). However, L(MR)L(RM) if and only if LRM if and only if L(RM)=L.

Set subtraction complexity: To manage the many identities involving set subtraction, this section is divided based on where the set subtraction operation and parentheses are located on the left hand side of the identity. The great variety and (relative) complexity of formulas involving set subtraction (compared to those without it) is in part due to the fact that unlike ,, and , set subtraction is neither associative nor commutative and it also is not left distributive over ,,, or even over itself.

Two set subtractions

Set subtraction is not associative in general: (LM)RL(MR) since only the following is always guaranteed: (LM)RL(MR).

(L\M)\R

(LM)R=L(MR)=(LR)M=(LM)(LR)=(LR)M=(LR)(MR)

L\(M\R)

L(MR)=(LM)(LR)

  • If LM then L(MR)=LR
  • L(MR)(LM)R with equality if and only if RL.

One set subtraction

(L\M) ⁎ R

Set subtraction on the left, and parentheses on the left

(LM)R=(LR)(MR)=(L(MR))R (the outermost union is disjoint) 

(LM)R=(LR)(MR) (Distributive law of  over  )=(LR)M=L(RM)[4]

(LM)(LR)=L(MR)L(MR)=(LM)(LR) (LM)R=(L(MR))(RL)(LMR) (the three outermost sets are pairwise disjoint) 

(LM)×R=(L×R)(M×R) (Distributivity)

L\(M ⁎ R)

Set subtraction on the left, and parentheses on the right

L(MR)=(LM)(LR) (De Morgan's law) =(LM)R=(LR)M

L(MR)=(LM)(LR) (De Morgan's law)  where the above two sets that are the subjects of De Morgan's laws always satisfy L(MR)L(MR).

L(MR)=(L(MR))(LMR) (the outermost union is disjoint) 

(L ⁎ M)\R

Set subtraction on the right, and parentheses on the left

(LM)R=(LR)(MR)

(LM)R=(LR)(MR)=L(MR)=M(LR)

(LM)R=(LR)(MR)=(LR)(MR)

L ⁎ (M\R)

Set subtraction on the right, and parentheses on the right

L(MR)=L(M(RL)) (the outermost union is disjoint) =[(LM)(RL)](MR) (the outermost union is disjoint) =(L(MR))(RL)(MR) (the three outermost sets are pairwise disjoint) 

L(MR)=(LM)(LR) (Distributive law of  over  )=(LM)R=M(LR)=(LR)(MR)[4]

L×(MR)=(L×M)(L×R) (Distributivity)

Three operations on three sets

(L • M) ⁎ (M • R)

Operations of the form (LM)(MR):

(LM)(MR)=LMR(LM)(MR)=M(LR)(LM)(MR)=L(MR)(LM)(MR)=(L(MR))(R(LM))=(LR)M(LM)(MR)=M(LR)(LM)(MR)=LMR(LM)(MR)=(LM)R(LM)(MR)=[(LM)(MR)](LMR)(LM)(MR)=(LM)(MR)(LM)(MR)=(LM)(MR)=LM(LM)(MR)=(LM)(MR)=(LM)(MR)(LM)(MR)=(LMR)(LMR)(LM)(MR)=((LR)M)(M(LR))(LM)(MR)=(L(MR))((MR)L)(LM)(MR)=LR

(L • M) ⁎ (R\M)

Operations of the form (LM)(RM):

(LM)(RM)=LMR(LM)(RM)=(LR)M(LM)(RM)=M(LR)(LM)(RM)=M(LR)(LM)(RM)=[L(MR)][R(LM)] (disjoint union)=(LM)(RM)(LM)(RM)=(LM)(RM)=LM(LM)(RM)=(LM)(RM) (disjoint union)(LM)(RM)=LRM(LM)(RM)=(LR)M(LM)(RM)=L(MR)(LM)(RM)=(LR)M(LM)(RM)=(LMR)(LM)(LM)(RM)=(LR)M(LM)(RM)=[L(MR)](ML) (disjoint union)=(LM)(LR)(LM)(RM)=L(MR)

(L\M) ⁎ (L\R)

Operations of the form (LM)(LR):

(LM)(LR)=L(MR)(LM)(LR)=L(MR)(LM)(LR)=(LR)M(LM)(LR)=L(MR)=(LM)(LR)

Other simplifications

Other properties:

LM=R and LR=M if and only if M=RL.

  • If LM then LR=L(MR).[4]
  • L×(MR)=(L×M)(L×R)
  • If LR then MRML.
  • LMR= if and only if for any xLMR, x belongs to at most two of the sets L,M, and R.

Cartesian products ⨯ of finitely many sets

Binary ⋂ of finite ⨯

(L×R)(L2×R2)=(LL2)×(RR2) (L×M×R)(L2×M2×R2)=(LL2)×(MM2)×(RR2)

Binary ⋃ of finite ⨯

(L×R)(L2×R2)=[(LL2)×R][(L2L)×R2][(LL2)×(RR2)]=[L×(RR2)][L2×(R2R)][(LL2)×(RR2)]

Difference \ of finite ⨯

(L×R)(L2×R2)=[(LL2)×R][L×(RR2)] and (L×M×R)(L2×M2×R2)=[(LL2)×M×R][L×(MM2)×R][L×M×(RR2)]

Finite ⨯ of differences \

(LL2)×(RR2)=(L×R)[(L2×R)(L×R2)]

(LL2)×(MM2)×(RR2)=(L×M×R)[(L2×M×R)(L×M2×R)(L×M×R2)]

Symmetric difference ∆ and finite ⨯

L×(RR2)=[L×(RR2)][L×(R2R)] (LL2)×R=[(LL2)×R][(L2L)×R]

(LL2)×(RR2)=[(LL2)×(RR2)][((LL2)×R)(L×(RR2))]=[(LL2)×(R2R)][(L2L)×(R2R)][(LL2)×(RR2)][(L2L)(RR2)]

(LL2)×(MM2)×(RR2)=[(LL2)×(MM2)×(RR2)][((LL2)×M×R)(L×(MM2)×R)(L×M×(RR2))]

In general, (LL2)×(RR2) need not be a subset nor a superset of (L×R)(L2×R2).

(L×R)(L2×R2)=(L×R)(L2×R2)[(LL2)×(RR2)]

(L×M×R)(L2×M2×R2)=(L×M×R)(L2×M2×R2)[(LL2)×(MM2)×(RR2)]

Arbitrary families of sets

Let (Li)iI, (Rj)jJ, and (Si,j)(i,j)I×J be indexed families of sets. Whenever the assumption is needed, then all indexing sets, such as I and J, are assumed to be non-empty.

Definitions

A family of sets or (more briefly) a family refers to a set whose elements are sets.

An indexed family of sets is a function from some set, called its indexing set, into some family of sets. An indexed family of sets will be denoted by (Li)iI, where this notation assigns the symbol I for the indexing set and for every index iI, assigns the symbol Li to the value of the function at i. The function itself may then be denoted by the symbol L, which is obtained from the notation (Li)iI by replacing the index i with a bullet symbol ; explicitly, L is the function: L:I{Li:iI}iLi which may be summarized by writing L=(Li)iI.

Any given indexed family of sets L=(Li)iI (which is a function) can be canonically associated with its image/range ImL=def{Li:iI} (which is a family of sets). Conversely, any given family of sets may be associated with the -indexed family of sets (B)B, which is technically the identity map . However, this is not a bijective correspondence because an indexed family of sets L=(Li)iI is not required to be injective (that is, there may exist distinct indices ij such as Li=Lj), which in particular means that it is possible for distinct indexed families of sets (which are functions) to be associated with the same family of sets (by having the same image/range).

Arbitrary unions defined[3]

iILi=def{x: there exists iI such that xLi}

 

 

 

 

(Def. 1)

If I= then iLi={x: there exists i such that xLi}=, which is somethings called the nullary union convention (despite being called a convention, this equality follows from the definition).

If is a family of sets then denotes the set: =defBB=def{x: there exists B such that xB}.

Arbitrary intersections defined

If I then[3]

iILi=def{x:xLi for every iI}={x: for all i, if iI then xLi}.

 

 

 

 

(Def. 2)

If is a non-empty family of sets then denotes the set: =defBBB=def{x:xB for every B}={x: for all B, if B then xB}.

Nullary intersections

If I= then iLi={x: for all i, if i then xLi} where every possible thing x in the universe vacuously satisfied the condition: "if i then xLi". Consequently, iLi={x: true } consists of everything in the universe.

So if I= and:

  1. if you are working in a model in which there exists some universe set X then iLi={x:xLi for every i}=X.
  2. otherwise, if you are working in a model in which "the class of all things x" is not a set (by far the most common situation) then iLi is undefined because iLi consists of everything, which makes iLi a proper class and not a set.
Assumption: Henceforth, whenever a formula requires some indexing set to be non-empty in order for an arbitrary intersection to be well-defined, then this will automatically be assumed without mention.

A consequence of this is the following assumption/definition:

A finite intersection of sets or an intersection of finitely many sets refers to the intersection of a finite collection of one or more sets.

Some authors adopt the so called nullary intersection convention, which is the convention that an empty intersection of sets is equal to some canonical set. In particular, if all sets are subsets of some set X then some author may declare that the empty intersection of these sets be equal to X. However, the nullary intersection convention is not as commonly accepted as the nullary union convention and this article will not adopt it (this is due to the fact that unlike the empty union, the value of the empty intersection depends on X so if there are multiple sets under consideration, which is commonly the case, then the value of the empty intersection risks becoming ambiguous).

Multiple index sets jJiI,Si,j=def(i,j)I×JSi,j jJiI,Si,j=def(i,j)I×JSi,j

Distributing unions and intersections

Binary ⋂ of arbitrary ⋃'s

(iILi)R=iI(LiR)

 

 

 

 

(Eq. 3a)

and[4]

(iILi)(jJRj)=jJiI,(LiRj)

 

 

 

 

(Eq. 3b)

  • If all (Li)iI are pairwise disjoint and all (Rj)jJ are also pairwise disjoint, then so are all (LiRj)(i,j)I×J (that is, if (i,j)(i2,j2) then (LiRj)(Li2Rj2)=).

  • Importantly, if I=J then in general, (iILi)(iIRi)iI(LiRi) (an example of this is given below). The single union on the right hand side must be over all pairs (i,j)I×I: (iILi)(iIRi)=jIiI,(LiRj). The same is usually true for other similar non-trivial set equalities and relations that depend on two (potentially unrelated) indexing sets I and J (such as Eq. 4b or Eq. 7g[4]). Two exceptions are Eq. 2c (unions of unions) and Eq. 2d (intersections of intersections), but both of these are among the most trivial of set equalities (although even for these equalities there is still something that must be proven[note 2]).
  • Example where equality fails: Let X and let I={1,2}. Let L1:=R2:=X and let L2:=R1:=. Then X=XX=(L1L2)(R2R2)=(iILi)(iIRi)iI(LiRi)=(L1R1)(L2R2)==. Furthermore, ==(L1L2)(R2R2)=(iILi)(iIRi)iI(LiRi)=(L1R1)(L2R2)=XX=X.

Binary ⋃ of arbitrary ⋂'s

(iILi)R=iI(LiR)

 

 

 

 

(Eq. 4a)

and[4]

(iILi)(jJRj)=jJiI,(LiRj)

 

 

 

 

(Eq. 4b)

  • Importantly, if I=J then in general, (iILi)(iIRi)iI(LiRi) (an example of this is given above). The single intersection on the right hand side must be over all pairs (i,j)I×I: (iILi)(iIRi)=jIiI,(LiRj).

Arbitrary ⋂'s and arbitrary ⋃'s

Incorrectly distributing by swapping ⋂ and ⋃

Naively swapping iI and jJ may produce a different set

The following inclusion always holds:

iI(jJSi,j)jJ(iISi,j)

 

 

 

 

(Inclusion 1 ∪∩ is a subset of ∩∪)

In general, equality need not hold and moreover, the right hand side depends on how for each fixed iI, the sets (Si,j)jJ are labelled; and analogously, the left hand side depends on how for each fixed jJ, the sets (Si,j)iI are labelled. An example demonstrating this is now given.

  • Example of dependence on labeling and failure of equality: To see why equality need not hold when and are swapped, let I:=J:={1,2}, and let S11={1,2},S12={1,3},S21={3,4}, and S22={2,4}. Then {1,4}={1}{4}=(S11S12)(S21S22)=iI(jJSi,j)jJ(iISi,j)=(S11S21)(S12S22)={1,2,3,4}. If S11 and S21 are swapped while S12 and S22 are unchanged, which gives rise to the sets S^11:={3,4},S^12:={1,3},S^21:={1,2}, and S^22:={2,4}, then {2,3}={3}{2}=(S^11S^12)(S^21S^22)=iI(jJS^i,j)jJ(iIS^i,j)=(S^11S^21)(S^12S^22)={1,2,3,4}. In particular, the left hand side is no longer {1,4}, which shows that the left hand side iIjJSi,j depends on how the sets are labelled. If instead S11 and S12 are swapped while S21 and S22 are unchanged, which gives rise to the sets S11:={1,3},S12:={1,2},S21:={3,4}, and S22:={2,4}, then both the left hand side and right hand side are equal to {1,4}, which shows that the right hand side also depends on how the sets are labeled.

Equality in Inclusion 1 ∪∩ is a subset of ∩∪ can hold under certain circumstances, such as in 7e, which is the special case where (Si,j)(i,j)I×J is (LiRj)(i,j)I×J (that is, Si,j:=LiRj with the same indexing sets I and J), or such as in 7f, which is the special case where (Si,j)(i,j)I×J is (LiRj)(j,i)J×I (that is, S^j,i:=LiRj with the indexing sets I and J swapped). For a correct formula that extends the distributive laws, an approach other than just switching and is needed.

Correct distributive laws

Suppose that for each iI, Ji is a non-empty index set and for each jJi, let Ti,j be any set (for example, to apply this law to (Si,j)(i,j)I×J, use Ji:=J for all iI and use Ti,j:=Si,j for all iI and all jJi=J). Let J=defiIJi denote the Cartesian product, which can be interpreted as the set of all functions f:IiIJi such that f(i)Ji for every iI. Such a function may also be denoted using the tuple notation (fi)iI where fi=deff(i) for every iI and conversely, a tuple (fi)iI is just notation for the function with domain I whose value at iI is fi; both notations can be used to denote the elements of J. Then

iI[jJiTi,j]=fJ[iITi,f(i)]

 

 

 

 

(Eq. 5 ∩∪ to ∪∩)

iI[jJiTi,j]=fJ[iITi,f(i)]

 

 

 

 

(Eq. 6 ∪∩ to ∩∪)

where J=defiIJi.

Applying the distributive laws

Example application: In the particular case where all Ji are equal (that is, Ji=Ji2 for all i,i2I, which is the case with the family (Si,j)(i,j)I×J, for example), then letting J denote this common set, the Cartesian product will be J=defiIJi=iIJ=JI, which is the set of all functions of the form f:IJ. The above set equalities Eq. 5 ∩∪ to ∪∩ and Eq. 6 ∪∩ to ∩∪, respectively become:[3] iIjJSi,j=fJIiISi,f(i) iIjJSi,j=fJIiISi,f(i)

which when combined with Inclusion 1 ∪∩ is a subset of ∩∪ implies: iIjJSi,j=fJIiISi,f(i)gIJjJSg(j),j=jJiISi,j where

  • on the left hand side, the indices f and i range over fJI and iI (so the subscripts of Si,f(i) range over iI and f(i)f(I)J)
  • on the right hand side, the indices g and j range over gIJ and jJ (so the subscripts of Sg(j),j range over jJ and g(j)g(J)I).


Example application: To apply the general formula to the case of (Ck)kK and (Dl)lL, use I:={1,2}, J1:=K, J2:=L, and let T1,k:=Ck for all kJ1 and let T2,l:=Dl for all lJ2. Every map fJ=defiIJi=J1×J2=K×L can be bijectively identified with the pair (f(1),f(2))K×L (the inverse sends (k,l)K×L to the map f(k,l)J defined by 1k and 2l; this is technically just a change of notation). Recall that Eq. 5 ∩∪ to ∪∩ was iIjJiTi,j=fJiITi,f(i). Expanding and simplifying the left hand side gives iIjJiTi,j=(jJ1T1,j)(jJ2T2,j)=(kKT1,k)(lLT2,l)=(kKCk)(lLDl) and doing the same to the right hand side gives: fJiITi,f(i)=fJ(T1,f(1)T2,f(2))=fJ(Cf(1)Df(2))=(k,l)K×L(CkDl)=lLkK,(CkDl).

Thus the general identity Eq. 5 ∩∪ to ∪∩ reduces down to the previously given set equality Eq. 3b: (kKCk)lLDl=lLkK,(CkDl).

Distributing subtraction over ⋃ and ⋂

(iILi)R=iI(LiR)

 

 

 

 

(Eq. 7a)

(iILi)R=iI(LiR)

 

 

 

 

(Eq. 7b)

The next identities are known as De Morgan's laws.[4]

LjJRj=jJ(LRj) De Morgan's law 

 

 

 

 

(Eq. 7c)

LjJRj=jJ(LRj) De Morgan's law 

 

 

 

 

(Eq. 7d)

The following four set equalities can be deduced from the equalities 7a - 7d above.

(iILi)jJRj=iI(jJ(LiRj))=jJ(iI(LiRj))

 

 

 

 

(Eq. 7e)

(iILi)jJRj=jJ(iI(LiRj))=iI(jJ(LiRj))

 

 

 

 

(Eq. 7f)

(iILi)jJRj=jJiI,(LiRj)

 

 

 

 

(Eq. 7g)

(iILi)jJRj=jJiI,(LiRj)

 

 

 

 

(Eq. 7h)

In general, naively swapping and may produce a different set (see this note for more details). The equalities iIjJ(LiRj)=jJiI(LiRj) and jJiI(LiRj)=iIjJ(LiRj) found in Eq. 7e and Eq. 7f are thus unusual in that they state exactly that swapping and will not change the resulting set.

Commutativity and associativity of ⋃ and ⋂

Commutativity:[3]

jJiI,Si,j=def(i,j)I×JSi,j=iI(jJSi,j)=jJ(iISi,j)

jJiI,Si,j=def(i,j)I×JSi,j=iI(jJSi,j)=jJ(iISi,j)

Unions of unions and intersections of intersections:[3]

(iILi)R=iI(LiR) (iILi)R=iI(LiR) and[3]

(iILi)(jJRj)=jJiI,(LiRj)

 

 

 

 

(Eq. 2a)

(iILi)(jJRj)=jJiI,(LiRj)

 

 

 

 

(Eq. 2b)

and if I=J then also:[note 2][3]

(iILi)(iIRi)=iI(LiRi)

 

 

 

 

(Eq. 2c)

(iILi)(iIRi)=iI(LiRi)

 

 

 

 

(Eq. 2d)

Cartesian products Π of arbitrarily many sets

Intersections ⋂ of Π

If (Si,j)(i,j)I×J is a family of sets then

jJiISi,j=iIjJSi,j

 

 

 

 

(Eq. 8)

  • Moreover, a tuple (xi)iI belongs to the set in Eq. 8 above if and only if xiSi,j for all iI and all jJ.

In particular, if (Li)iI and (Ri)iI are two families indexed by the same set then (iILi)iIRi=iI(LiRi) So for instance, (L×R)(L2×R2)=(LL2)×(RR2) (L×R)(L2×R2)(L3×R3)=(LL2L3)×(RR2R3) and (L×M×R)(L2×M2×R2)=(LL2)×(MM2)×(RR2)

Intersections of products indexed by different sets

Let (Li)iI and (Rj)jJ be two families indexed by different sets.

Technically, IJ implies (iILi)jJRj=. However, sometimes these products are somehow identified as the same set through some bijection or one of these products is identified as a subset of the other via some injective map, in which case (by abuse of notation) this intersection may be equal to some other (possibly non-empty) set.

  • For example, if I:={1,2} and J:={1,2,3} with all sets equal to then iILi=i{1,2}=2 and jJRj=j{1,2,3}=3 where 23= unless, for example, i{1,2}=2 is identified as a subset of j{1,2,3}=3 through some injection, such as maybe (x,y)(x,y,0) for instance; however, in this particular case the product iI={1,2}Li actually represents the J-indexed product jJ={1,2,3}Li where L3:={0}.
  • For another example, take I:={1,2} and J:={1,2,3} with L1:=2 and L2,R1,R2, and R3 all equal to . Then iILi=2× and jJRj=××, which can both be identified as the same set via the bijection that sends ((x,y),z)2× to (x,y,z)××. Under this identification, (iILi)jJRj=3.

Unions ⋃ of Π

For unions, only the following is guaranteed in general: jJiISi,jiIjJSi,j and iIjJSi,jjJiISi,j where (Si,j)(i,j)I×J is a family of sets.

However, (L×R)(L2×R2)=[(LL2)×R][(L2L)×R2][(LL2)×(RR2)]=[L×(RR2)][L2×(R2R)][(LL2)×(RR2)]

Difference \ of Π

If (Li)iI and (Ri)iI are two families of sets then: (iILi)iIRi=jIiI{LjRj if i=jLi if ij=jI[(LjRj)×jiiI,Li]=Lj⊈RjjI,[(LjRj)×jiiI,Li] so for instance, (L×R)(L2×R2)=[(LL2)×R][L×(RR2)] and (L×M×R)(L2×M2×R2)=[(LL2)×M×R][L×(MM2)×R][L×M×(RR2)]

Symmetric difference ∆ of Π

(iILi)(iIRi)=(iILi)(iIRi)iILiRi

Functions and sets

Let f:XY be any function.

Let L and R be completely arbitrary sets. Assume AX and CY.

Definitions

Let f:XY be any function, where we denote its domain X by domainf and denote its codomain Y by codomainf.

Many of the identities below do not actually require that the sets be somehow related to f's domain or codomain (that is, to X or Y) so when some kind of relationship is necessary then it will be clearly indicated. Because of this, in this article, if L is declared to be "any set," and it is not indicated that L must be somehow related to X or Y (say for instance, that it be a subset X or Y) then it is meant that L is truly arbitrary.[note 3] This generality is useful in situations where f:XY is a map between two subsets XU and YV of some larger sets U and V, and where the set L might not be entirely contained in X=domainf and/or Y=codomainf (e.g. if all that is known about L is that LU); in such a situation it may be useful to know what can and cannot be said about f(L) and/or f1(L) without having to introduce a (potentially unnecessary) intersection such as: f(LX) and/or f1(LY).

Images and preimages of sets

If L is any set then the image of L under f is defined to be the set: f(L)=def{f(l):lLdomainf} while the preimage of L under f is: f1(L)=def{xdomainf:f(x)L} where if L={s} is a singleton set then the filber or preimage of s under f is f1(s)=deff1({s})={xdomainf:f(x)=s}.

Denote by Imf or imagef the image or range of f:XY, which is the set: Imf=deff(X)=deff(domainf)={f(x):xdomainf}.

Saturated sets

Main page: Saturated set

A set A is said to be f-saturated or a saturated set if any of the following equivalent conditions are satisfied:[3]

  1. There exists a set R such that A=f1(R).
    • Any such set R necessarily contains f(A) as a subset.
    • Any set not entirely contained in the domain of f cannot be f-saturated.
  2. A=f1(f(A)).
  3. Af1(f(A)) and Adomainf.
    • The inclusion Ldomainff1(f(L)) always holds, where if Adomainf then this becomes Af1(f(A)).
  4. Adomainf and if aA and xdomainf satisfy f(x)=f(a), then xA.
  5. Whenever a fiber of f intersects A, then A contains the entire fiber. In other words, A contains every f-fiber that intersects it.
    • Explicitly: whenever yImf is such that Af1(y), then f1(y)sA.
    • In both this statement and the next, the set Imf may be replaced with any superset of Imf (such as codomainf) and the resulting statement will still be equivalent to the rest.
  6. The intersection of A with a fiber of f is equal to the empty set or to the fiber itself.
    • Explicitly: for every yImf, the intersection Af1(y) is equal to the empty set or to f1(y) (that is, Af1(y)= or Af1(y)=f1(y)).

For a set A to be f-saturated, it is necessary that Adomainf.

Compositions and restrictions of functions

If f and g are maps then gf denotes the composition map gf:{xdomainf:f(x)domaing}codomaing with domain and codomain domain(gf)={xdomainf:f(x)domaing}codomain(gf)=codomaing defined by (gf)(x)=defg(f(x)).

The restriction of f:XY to L, denoted by f|L, is the map f|L:LdomainfY with domainf|L=Ldomainf defined by sending xLdomainf to f(x); that is, f|L(x)=deff(x). Alternatively, f|L=fIn where In:LXX denotes the inclusion map, which is defined by In(s)=defs.

(Pre)Images of arbitrary unions ⋃'s and intersections ⋂'s

If (Li)iI is a family of arbitrary sets indexed by I then:[5] f(iILi)iIf(Li)f(iILi)=iIf(Li)f1(iILi)=iIf1(Li)f1(iILi)=iIf1(Li)

So of these four identities, it is only images of intersections that are not always preserved. Preimages preserve all basic set operations. Unions are preserved by both images and preimages.

If all Li are f-saturated then iILi be will be f-saturated and equality will hold in the first relation above; explicitly, this means:

f(iILi)=iIf(Li)IFXLi=f1(f(Li)) for all iI.

 

 

 

 

(Conditional Equality 10a)

If (Ai)iI is a family of arbitrary subsets of X=domainf, which means that AiX for all i, then Conditional Equality 10a becomes:

f(iIAi)=iIf(Ai)IFAi=f1(f(Ai)) for all iI.

 

 

 

 

(Conditional Equality 10b)

(Pre)Images of binary set operations

Throughout, let L and R be any sets and let f:XY be any function.

Summary

As the table below shows, set equality is not guaranteed only for images of: intersections, set subtractions, and symmetric differences.

Image Preimage Additional assumptions on sets
f(LR)=f(L)f(R)[6] f1(LR)=f1(L)f1(R)[3] None
f(LR)f(L)f(R) f1(LR)=f1(L)f1(R)[3] None
f(LR)f(L)f(R) f1(L)f1(R)=f1(LR)=f1(L[RImf])=f1([LImf]R)=f1([LImf][RImf])[5][3] None
f(XR)f(X)f(R) Xf1(R)=f1(YR)=f1(Y[RImf])=f1(ImfR)=f1(Imf[RImf])[note 4] None
f(LR)f(L)f(R) f1(LR)=f1(L)f1(R) None

Preimages preserve set operations

Preimages of sets are well-behaved with respect to all basic set operations:

f1(LR)=f1(L)f1(R)f1(LR)=f1(L)f1(R)f1(LR)=f1(L)f1(R)f1(LR)=f1(L)f1(R)

In words, preimages distribute over unions, intersections, set subtraction, and symmetric difference.

Images only preserve unions

Images of unions are well-behaved:

f(LR)=f(L)f(R)

but images of the other basic set operations are not since only the following are guaranteed in general:

f(LR)f(L)f(R)f(LR)f(L)f(R)f(LR)f(L)f(R)

In words, images distribute over unions but not necessarily over intersections, set subtraction, or symmetric difference. What these latter three operations have in common is set subtraction: they either are set subtraction LR or else they can naturally be defined as the set subtraction of two sets: LR=L(LR) and LR=(LR)(LR).

If L=X then f(XR)f(X)f(R) where as in the more general case, equality is not guaranteed. If f is surjective then f(XR)Yf(R), which can be rewritten as: f(R)f(R) if R=defXR and f(R)=defYf(R).

Counter-examples: images of operations not distributing

Picture showing f failing to distribute over set intersection:
f(A1A2)f(A1)f(A2).
The map f: is defined by xx2, where denotes the real numbers. The sets A1=[4,2] and A2=[2,4] are shown in blue immediately below the x-axis while their intersection A3=[2,2] is shown in green.

If f:{1,2}Y is constant, L={1}, and R={2} then all four of the set containments f(LR)f(L)f(R)f(LR)f(L)f(R)f(XR)f(X)f(R)f(LR)f(L)f(R) are strict/proper (that is, the sets are not equal) since one side is the empty set while the other is non-empty. Thus equality is not guaranteed for even the simplest of functions. The example above is now generalized to show that these four set equalities can fail for any constant function whose domain contains at least two (distinct) points.

Example: Let f:XY be any constant function with image f(X)={y} and suppose that L,RX are non-empty disjoint subsets; that is, L,R, and LR=, which implies that all of the sets LR=LR, LR=L, and XRLR are not empty and so consequently, their images under f are all equal to {y}.

  1. The containment f(LR)f(L)f(R) is strict: {y}=f(LR)f(L)f(R)={y}{y}= In words: functions might not distribute over set subtraction
  2. The containment f(XR)f(X)f(R) is strict: {y}=f(XR)f(X)f(R)={y}{y}=.
  3. The containment f(LR)f(L)f(R) is strict: {y}=f(LR)f(L)f(R)={y}{y}= In words: functions might not distribute over symmetric difference (which can be defined as the set subtraction of two sets: LR=(LR)(LR)).
  4. The containment f(LR)f(L)f(R) is strict: =f()=f(LR)f(L)f(R)={y}{y}={y} In words: functions might not distribute over set intersection (which can be defined as the set subtraction of two sets: LR=L(LR)).

What the set operations in these four examples have in common is that they either are set subtraction (examples (1) and (2)) or else they can naturally be defined as the set subtraction of two sets (examples (3) and (4)).

Mnemonic: In fact, for each of the above four set formulas for which equality is not guaranteed, the direction of the containment (that is, whether to use  or ) can always be deduced by imagining the function f as being constant and the two sets (L and R) as being non-empty disjoint subsets of its domain. This is because every equality fails for such a function and sets: one side will be always be and the other non-empty − from this fact, the correct choice of  or  can be deduced by answering: "which side is empty?" For example, to decide if the ? in f(LR)f(R)?f((LR)R) should be  or , pretend[note 5] that f is constant and that LR and R are non-empty disjoint subsets of f's domain; then the left hand side would be empty (since f(LR)f(R)={f's single value}{f's single value}=), which indicates that ? should be (the resulting statement is always guaranteed to be true) because this is the choice that will make =left hand side?right hand side true. Alternatively, the correct direction of containment can also be deduced by consideration of any constant f:{1,2}Y with L={1} and R={2}.

Furthermore, this mnemonic can also be used to correctly deduce whether or not a set operation always distribute over images or preimages; for example, to determine whether or not f(LR) always equals f(L)f(R), or alternatively, whether or not f1(LR) always equals f1(L)f1(R) (although was used here, it can replaced by ,, or ). The answer to such a question can, as before, be deduced by consideration of this constant function: the answer for the general case (that is, for arbitrary f,L, and R) is always the same as the answer for this choice of (constant) function and disjoint non-empty sets.

Conditions guaranteeing that images distribute over set operations

Characterizations of when equality holds for all sets:

For any function f:XY, the following statements are equivalent:

  1. f:XY is injective.
    • This means: f(x)f(y) for all distinct x,yX.
  2. f(LR)=f(L)f(R) for all L,RX. (The equals sign = can be replaced with ).
  3. f(LR)=f(L)f(R) for all L,RX. (The equals sign = can be replaced with ).
  4. f(XR)=f(X)f(R) for all RX. (The equals sign = can be replaced with ).
  5. f(LR)=f(L)f(R) for all L,RX. (The equals sign = can be replaced with ).
  6. Any one of the four statements (b) - (e) but with the words "for all" replaced with any one of the following:
    1. "for all singleton subsets"
      • In particular, the statement that results from (d) gives a characterization of injectivity that explicitly involves only one point (rather than two): f is injective if and only if f(x)∉f(X{x}) for every xX.
    2. "for all disjoint singleton subsets"
      • For statement (d), this is the same as: "for all singleton subsets" (because the definition of "pairwise disjoint" is satisfies vacuously by any family that consists of exactly 1 set).
    3. "for all disjoint subsets"

In particular, if a map is not known to be injective then barring additional information, there is no guarantee that any of the equalities in statements (b) - (e) hold.

An example above can be used to help prove this characterization. Indeed, comparison of that example with such a proof suggests that the example is representative of the fundamental reason why one of these four equalities in statements (b) - (e) might not hold (that is, representative of "what goes wrong" when a set equality does not hold).

Conditions for f(L⋂R) = f(L)⋂f(R)

f(LR)f(L)f(R) always holds

Characterizations of equality: The following statements are equivalent:

  1. f(LR)=f(L)f(R)
  2. f(LR)f(L)f(R)
  3. Lf1(f(R))f1(f(LR))
    • The left hand side Lf1(f(R)) is always equal to Lf1(f(L)f(R)) (because Lf1(f(R))f1(f(L)) always holds).
  4. Rf1(f(L))f1(f(LR))
  5. Lf1(f(R))=f1(f(LR))L
  6. Rf1(f(L))=f1(f(LR))R
  7. If lL satisfies f(l)f(R) then f(l)f(LR).
  8. If yf(L) but yf(LR) then yf(R).
  9. f(L)f(LR)f(L)f(R)
  10. f(R)f(LR)f(R)f(L)
  11. f(LR)f(LR)f(L)f(R)
  12. Any of the above three conditions (i) - (k) but with the subset symbol replaced with an equals sign =.

Sufficient conditions for equality: Equality holds if any of the following are true:

  1. f is injective.[7]
  2. The restriction f|LR is injective.
  3. f1(f(R))R[note 6]
  4. f1(f(L))L
  5. R is f-saturated; that is, f1(f(R))=R[note 6]
  6. L is f-saturated; that is, f1(f(L))=L
  7. f(L)f(LR)
  8. f(R)f(LR)
  9. f(LR)f(L)f(R) or equivalently, f(LR)=f(L)f(R)
  10. f(RL)f(R)f(L) or equivalently, f(RL)=f(R)f(L)
  11. f(LR)f(L)f(R) or equivalently, f(LR)=f(L)f(R)
  12. RdomainfL
  13. LdomainfR
  14. RL
  15. LR

In addition, the following always hold: f(f1(L)R)=Lf(R) f(f1(L)R)=(LImf)f(R)

Conditions for f(L\R) = f(L)\f(R)

f(LR)f(L)f(R) always holds

Characterizations of equality: The following statements are equivalent:[proof 1]

  1. f(LR)=f(L)f(R)
  2. f(LR)f(L)f(R)
  3. Lf1(f(R))R
  4. Lf1(f(R))=LRdomainf
  5. Whenever yf(L)f(R) then Lf1(y)R.
  6. f(L)f(R){yf(L):Lf1(y)R}
    • The set on the right hand side is always equal to {yf(LR):Lf1(y)R}.
  7. f(L)f(R)={yf(L):Lf1(y)R}
    • This is the above condition (f) but with the subset symbol replaced with an equals sign =.

Necessary conditions for equality (excluding characterizations): If equality holds then the following are necessarily true:

  1. f(LR)=f(L)f(R), or equivalently f(LR)f(L)f(R).
  2. Lf1(f(R))=Lf1(f(LR)) or equivalently, Lf1(f(R))f1(f(LR))
  3. Rf1(f(L))=Rf1(f(LR))

Sufficient conditions for equality: Equality holds if any of the following are true:

  1. f is injective.
  2. The restriction f|LR is injective.
  3. f1(f(R))R[note 6] or equivalently, Rdomainf=f1(f(R))
  4. R is f-saturated; that is, R=f1(f(R)).[note 6]
  5. f(LR)f(L)f(R) or equivalently, f(LR)=f(L)f(R)
Conditions for f(X\R) = f(X)\f(R)

f(XR)f(X)f(R) always holds, where f:XY

Characterizations of equality: The following statements are equivalent:[proof 1]

  1. f(XR)=f(X)f(R)
  2. f(XR)f(X)f(R)
  3. f1(f(R))R
  4. f1(f(R))=Rdomainf
  5. Rdomainf is f-saturated.
  6. Whenever yf(R) then f1(y)R.
  7. f(R){yf(R):f1(y)R}
  8. f(R)={yf(R):f1(y)R}

   where if Rdomainf then this list can be extended to include:

  1. R is f-saturated; that is, R=f1(f(R)).

Sufficient conditions for equality: Equality holds if any of the following are true:

  1. f is injective.
  2. R is f-saturated; that is, R=f1(f(R)).
Conditions for f(L∆R) = f(L)∆f(R)

f(LR)f(L)f(R) always holds

Characterizations of equality: The following statements are equivalent:

  1. f(LR)=f(L)f(R)
  2. f(LR)f(L)f(R)
  3. f(LR)=f(L)f(R)  and  f(RL)=f(R)f(L)
  4. f(LR)f(L)f(R)  and  f(RL)f(R)f(L)
  5. Lf1(f(R))R  and  Rf1(f(L))L
    • The inclusions Lf1(f(R))f1(f(L)) and Rf1(f(L))f1(f(R)) always hold.
  6. Lf1(f(R))=Rf1(f(L))
    • If this above set equality holds, then this set will also be equal to both LRdomainf and LRf1(f(LR)).
  7. Lf1(f(LR))=Rf1(f(LR))  and  f(LR)f(L)f(R).

Necessary conditions for equality (excluding characterizations): If equality holds then the following are necessarily true:

  1. f(LR)=f(L)f(R), or equivalently f(LR)f(L)f(R).
  2. Lf1(f(LR))=Rf1(f(LR))

Sufficient conditions for equality: Equality holds if any of the following are true:

  1. f is injective.
  2. The restriction f|LR is injective.

Exact formulas/equalities for images of set operations

Formulas for f(L\R) =

For any function f:XY and any sets L and R,[proof 2] f(LR)=Y{yY:Lf1(y)R}=f(L){yf(L):Lf1(y)R}=f(L){yf(LR):Lf1(y)R}=f(L){yV:Lf1(y)R} for any superset Vf(LR)=f(S){yf(S):Lf1(y)R} for any superset SLX.

Formulas for f(X\R) =

Taking L:=X=domainf in the above formulas gives: f(XR)=Y{yY:f1(y)R}=f(X){yf(X):f1(y)R}=f(X){yf(R):f1(y)R}=f(X){yW:f1(y)R} for any superset Wf(R) where the set {yf(R):f1(y)R} is equal to the image under f of the largest f-saturated subset of R.

  • In general, only f(XR)f(X)f(R) always holds and equality is not guaranteed; but replacing "f(R)" with its subset "{yf(R):f1(y)R}" results in a formula in which equality is always guaranteed: f(XR)=f(X){yf(R):f1(y)R}. From this it follows that:[proof 1] f(XR)=f(X)f(R) if and only if f(R)={yf(R):f1(y)R} if and only if f1(f(R))R.
  • If fR:={yf(X):f1(y)R} then f(XR)=f(X)fR, which can be written more symmetrically as f(XR)=fXfR (since fX=f(X)).
Formulas for f(L∆R) =

It follows from LR=(LR)(LR) and the above formulas for the image of a set subtraction that for any function f:XY and any sets L and R, f(LR)=Y{yY:Lf1(y)=Rf1(y)}=f(LR){yf(LR):Lf1(y)=Rf1(y)}=f(LR){yf(LR):Lf1(y)=Rf1(y)}=f(LR){yV:Lf1(y)=Rf1(y)} for any superset Vf(LR)=f(S){yf(S):Lf1(y)=Rf1(y)} for any superset S(LR)X.

Formulas for f(L) =

It follows from the above formulas for the image of a set subtraction that for any function f:XY and any set L,f(L)=Y{yY:f1(y)L=}=Imf{yImf:f1(y)L=}=W{yW:f1(y)L=} for any superset Wf(L)

This is more easily seen as being a consequence of the fact that for any yY, f1(y)L= if and only if y∉f(L).

Formulas for f(L⋂R) =

It follows from the above formulas for the image of a set that for any function f:XY and any sets L and R, f(LR)=Y{yY:LRf1(y)=}=f(L){yf(L):LRf1(y)=}=f(L){yU:LRf1(y)=} for any superset Uf(L)=f(R){yf(R):LRf1(y)=}=f(R){yV:LRf1(y)=} for any superset Vf(R)=f(L)f(R){yf(L)f(R):LRf1(y)=} where moreover, for any yY,

Lf1(y)LR if and only if LRf1(y)= if and only if Rf1(y)RL if and only if y∉f(LR).

The sets U and V mentioned above could, in particular, be any of the sets f(LR),Imf, or Y, for example.

(Pre)Images of set operations on (pre)images

Let L and R be arbitrary sets, f:XY be any map, and let AX and CY.

Image of preimage Preimage of image Additional assumptions on sets
f(f1(L)R)=Lf(R)[5] f1(f(L)R)Lf1(R) None
f(f1(L)R)=(LImf)f(R)Lf(R) f1(f(A)R)Af1(R)[8]

Equality holds if any of the following are true:

  1. f(A)R.
  2. Af1(R).
AX

(Pre)Images of operations on images

Since f(L)f(LR)={yf(LR):Lf1(y)R},

f1(f(L)f(LR))=f1({yf(LR):Lf1(y)R})={xf1(f(LR)):Lf1(f(x))R}

Since f(X)f(LR)={yf(X):Lf1(y)R}, f1(Yf(LR))=f1(f(X)f(LR))=f1({yf(X):Lf1(y)R})={xX:Lf1(f(x))R}=Xf1(f(LR))

Using L:=X, this becomes f(X)f(XR)={yf(R):f1(y)R} and f1(Yf(XR))=f1(f(X)f(XR))=f1({yf(R):f1(y)R})={rRX:f1(f(r))R}R and so f1(Yf(L))=f1(f(X)f(L))=f1({yf(XL):f1(y)L=})={xXL:f(x)∉f(L)}=Xf1(f(L))XL

(Pre)Images and Cartesian products Π

Let Y=defjJYj and for every kJ, let πk:jJYjYk denote the canonical projection onto Yk.

Definitions

Given a collection of maps Fj:XYj indexed by jJ, define the map (Fj)jJ:XjJYjx(Fj(xj))jJ, which is also denoted by F=(Fj)jJ. This is the unique map satisfying πjF=Fj for all jJ.

Conversely, if given a map F:XjJYj then F=(πjF)jJ. Explicitly, what this means is that if Fk=defπkF:XYk is defined for every kJ, then F the unique map satisfying: πjF=Fj for all jJ; or said more briefly, F=(Fj)jJ.

The map F=(Fj)jJ:XjJYj should not be confused with the Cartesian product jJFj of these maps, which is by definition is the map jJFj:jJXjJYj(xj)jJ(Fj(xj))jJ with domain jJX=XJ rather than X.

Preimage and images of a Cartesian product

Suppose F=(Fj)jJ:XjJYj.

If AX then F(A)jJFj(A).

If BjJYj then F1(B)jJFj1(πj(B)) where equality will hold if B=jJπj(B), in which case F1(B)=jJFj1(πj(B)) and

F1(jJπj(B))=jJFj1(πj(B)).

 

 

 

 

(Eq. 11a)

For equality to hold, it suffices for there to exist a family (Bj)jJ of subsets BjYj such that B=jJBj, in which case:

F1(jJBj)=jJFj1(Bj)

 

 

 

 

(Eq. 11b)

and πj(B)=Bj for all jJ.

(Pre)Image of a single set

Image Preimage Additional assumptions
f(L)=f(Ldomainf)=f(LX)=Y{yY:f1(y)XL}=Imf{yImf:f1(y)XL} f1(L)=f1(LImf)=f1(LY) None
f(X)=ImfY f1(Y)=Xf1(Imf)=X None
f(L)=f(LR(LR))=f(LR)f(LR) f1(L)=f1(LR(LR))=f1(LR)f1(LR)=f1(LR)f1(L[RImf])=f1(LR)f1([LImf]R)=f1(LR)f1([LImf][RImf]) None
Imf=f(X)=f(L)f(XL) X=f1(L)f1(YL)=f1(L)f1(ImfL) None
f|L(R)=f(LR) (f|L)1(R)=Lf1(R) None
(gf)(L)=g(f(L)) (gf)1(L)=f1(g1(L)) None (f and g are arbitrary functions).
f(f1(L))=LImf
f1(f(L))Lf1(Imf)=Lf1(Y)[5] None
f(f1(Y))=f(f1(Imf))=f(X) f1(f(X))=f1(Imf)=X None
f(f1(f(L)))=f(L) f1(f(f1(L)))=f1(L) None

Containments ⊆ and intersections ⋂ of images and preimages

Equivalences and implications of images and preimages

Image Preimage Additional assumptions on sets
f(L)ImfY f1(L)=X if and only if ImfL None
f(L)= if and only if Ldomainf= f1(L)= if and only if LImf= None
f(A)= if and only if A= f1(C)= if and only if CYImf AX and CY
LR implies f(L)f(R)[5] LR implies f1(L)f1(R)[5] None
The following are equivalent:
  1. f(L)f(R)
  2. f(LR)=f(R)
  3. Ldomainff1(f(R))
The following are equivalent:
  1. f1(L)f1(R)
  2. f1(LR)=f1(R)
  3. LImfR

If CImf then f1(C)f1(R) if and only if CR.

CImf
The following are equivalent when CY:
  1. Cf(R)
  2. f(B)=C for some BR
  3. f(B)=C for some BRdomainf
The following are equivalent:
  1. Lf1(R)
  2. f(L)R and Ldomainf

The following are equivalent when AX:

  1. Af1(R)
  2. f(A)R
AX and CY
The following are equivalent:
  1. f(A)f(XA)
  2. f(A)=Imf
The following are equivalent:
  1. f1(C)f1(YC)
  2. f1(C)=X
AX and CY
f(f1(L))L[5]

Equality holds if and only if the following is true:

  1. LImf.[9][10]

Equality holds if any of the following are true:

  1. LY and f:XY is surjective.
f1(f(A))A

Equality holds if and only if the following is true:

  1. A is f-saturated.

Equality holds if any of the following are true:

  1. f is injective.[9][10]
AX

Intersection of a set and a (pre)image

The following statements are equivalent:

  1. =f(L)R
  2. =Lf1(R)[5]
  3. =f1(f(L))f1(R)
  4. =f1(f(L)R)

Thus for any t,[5] t∉f(L) if and only if Lf1(t)=.

Sequences and collections of families of sets

Definitions

A family of sets or simply a family is a set whose elements are sets. A family over X is a family of subsets of X.

The power set of a set X is the set of all subsets of X: (X):={S:SX}.

Notation for sequences of sets

Throughout, S and T will be arbitrary sets and S and will denote a net or a sequence of sets where if it is a sequence then this will be indicated by either of the notations S=(Si)i=1 or S=(Si)i where denotes the natural numbers. A notation S=(Si)iI indicates that S is a net directed by (I,), which (by definition) is a sequence if the set I, which is called the net's indexing set, is the natural numbers (that is, if I=) and is the natural order on .

Disjoint and monotone sequences of sets

If SiSj= for all distinct indices ij then S is called a pairwise disjoint or simply a disjoint. A sequence or net S of set is called increasing or non-decreasing if (resp. decreasing or non-increasing) if for all indices ij, SiSj (resp. SiSj). A sequence or net S of set is called strictly increasing (resp. strictly decreasing) if it is non-decreasing (resp. is non-increasing) and also SiSj for all distinct indices i and j. It is called monotone if it is non-decreasing or non-increasing and it is called strictly monotone if it is strictly increasing or strictly decreasing.

A sequences or net S is said to increase to S, denoted by SS[11] or SS, if S is increasing and the union of all Si is S; that is, if nSn=S and SiSj whenever ij. It is said to decrease to S, denoted by SS[11] or SS, if S is increasing and the intersection of all Si is S that is, if nSn=S and SiSj whenever ij.

Definitions of elementwise operations on families

If  and  are families of sets and if S is any set then define:[12] ():={LR:L and R} ():={LR:L and R} ():={LR:L and R} ():={LR:L and R} |S:={LS:L}=(){S} which are respectively called elementwise union, elementwise intersection, elementwise (set) difference, elementwise symmetric difference, and the trace/restriction of to S. The regular union, intersection, and set difference are all defined as usual and are denoted with their usual notation: ,,, and , respectively. These elementwise operations on families of sets play an important role in, among other subjects, the theory of filters and prefilters on sets.

The upward closure in X of a family (X) is the family: X:=L{S:LSX}={SX: there exists L such that LS} and the downward closure of is the family: :=L(L)={S: there exists L such that SL}.

Definitions of categories of families of sets

A family is called isotone, ascending, or upward closed in X if (X) and =X.[12] A family is called downward closed if =.

A family is said to be:

  • closed under finite intersections (resp. closed under finite unions) if whenever L,R then LR (respectively, LR).
  • closed under countable intersections (resp. closed under countable unions) if whenever L1,L2,L3, are elements of then so is their intersections i=1Li:=L1L2L3 (resp. so is their union i=1Li:=L1L2L3).
  • closed under complementation in (or with respect to) X if whenever L then XL.

A family of sets is called a/an:

  • π−system if and is closed under finite-intersections.
    • Every non-empty family is contained in a unique smallest (with respect to ) π−system that is denoted by π() and called the π−system generated by .
  • filter subbase and is said to have the finite intersection property if and ∉π().
  • filter on X if is a family of subsets of X that is a π−system, is upward closed in X, and is also proper, which by definition means that it does not contain the empty set as an element.
  • prefilter or filter base if it is a non-empty family of subsets of some set X whose upward closure in X is a filter on X.
  • algebra on X is a non-empty family of subsets of X that contains the empty set, forms a π−system, and is also closed under complementation with respect to X.
  • σ-algebra on X is an algebra on X that is closed under countable unions (or equivalently, closed under countable intersections).

Sequences of sets often arise in measure theory.

Algebra of sets


A family Φ of subsets of a set X is said to be an algebra of sets if Φ and for all L,RΦ, all three of the sets XR,LR, and LR are elements of Φ.[13] The article on this topic lists set identities and other relationships these three operations.

Every algebra of sets is also a ring of sets[13] and a π-system.

Algebra generated by a family of sets

Given any family 𝒮 of subsets of X, there is a unique smallest[note 7] algebra of sets in X containing 𝒮.[13] It is called the algebra generated by 𝒮 and it will be denote it by Φ𝒮. This algebra can be constructed as follows:[13]

  1. If 𝒮= then Φ𝒮={,X} and we are done. Alternatively, if 𝒮 is empty then 𝒮 may be replaced with {},{X}, or {,X} and continue with the construction.
  2. Let 𝒮0 be the family of all sets in 𝒮 together with their complements (taken in X).
  3. Let 𝒮1 be the family of all possible finite intersections of sets in 𝒮0.[note 8]
  4. Then the algebra generated by 𝒮 is the set Φ𝒮 consisting of all possible finite unions of sets in 𝒮1.

Elementwise operations on families

Let ,, and be families of sets over X. On the left hand sides of the following identities, is the Left most family, is in the Middle, and is the Right most set.

Commutativity:[12] ()=() ()=()

Associativity:[12] [()]()=()[()] [()]()=()[()]

Identity: (){}= (){X}= (){}=

Domination: (){X}={X} if  (){}={} if  ()= ()= ()= ()=

Power set

(LR)=(L)(R) (LR)=(L) () (R)(L)(R).

If L and R are subsets of a vector space X and if s is a scalar then (sL)=s(L) (L+R)(L)+(R).

Sequences of sets

Suppose that L is any set such that LRi for every index i. If R decreases to R then LR:=(LRi)i increases to LR[11] whereas if instead R increases to R then LR decreases to LR.

If L and R are arbitrary sets and if L=(Li)i increases (resp. decreases) to L then (LiR)i increase (resp. decreases) to LR.

Partitions

Suppose that S=(Si)i=1 is any sequence of sets, that SiSi is any subset, and for every index i, let Di=(SiS)m=1i(SmS). Then S=iDi and D:=(Di)i=1 is a sequence of pairwise disjoint sets.[11]

Suppose that S=(Si)i=1 is non-decreasing, let S0=, and let Di=SiSi1 for every i=1,2,. Then iSi=iDi and D=(Di)i=1 is a sequence of pairwise disjoint sets.[11]

See also

Notes

Notes

  1. For example, the expression (MR)A uses two of the same symbols (M and R) that appear in the identity (LM)R=(LR)(MR) but they refer to different sets in each expression. To apply this identity to (MR)A, substitute Left set:=M, Middle set:=R, and Right set:=A (since these are the left, middle, and right sets in (MR)A) to obtain: (MR)A=(Left set Right set)(Middle set Right set)=(MA)(RA). For a second example, this time applying the identity to ((MRL)(AL))L, is now given. The identity (LM)R=(LR)(MR) can be applied to ((MRL)(AL))L by reading L,M, and R as Left,Middle, and Right and then substituting Left=(MRL), Middle=(AL), and Right=L to obtain: ((MRL)(AL))L=(Left Right)(Middle Right)=((MRL)L)((AL)L).
  2. 2.0 2.1 To deduce Eq. 2c from Eq. 2a, it must still be shown that jIiI,(LiRj)=iI(LiRi) so Eq. 2c is not a completely immediate consequence of Eq. 2a. (Compare this to the commentary about Eq. 3b).
  3. So for instance, it's even possible that L(XY)=, or that LX and LY (which happens, for instance, if X=Y), etc.
  4. The conclusion Xf1(R)=f1(YR) can also be written as: f1(R)=f1(R).
  5. Whether or not it is even feasible for the function f to be constant and the sets LR and R to be non-empty and disjoint is irrelevant for reaching the correct conclusion about whether to use  or .
  6. 6.0 6.1 6.2 6.3 Note that this condition depends entirely on R and not on L.
  7. Here "smallest" means relative to subset containment. So if Φ is any algebra of sets containing 𝒮, then Φ𝒮Φ.
  8. Since 𝒮, there is some S𝒮0 such that its complement also belongs to 𝒮0. The intersection of these two sets implies that 𝒮1. The union of these two sets is equal to X, which implies that XΦ𝒮.

Proofs

  1. 1.0 1.1 1.2 Let fR:={yf(L):Lf1(y)R} where because fRf(RL), fR is also equal to fR={yf(RL):Lf1(y)R}. As proved above, f(LR)=f(L)fR so that f(L)f(R)=f(LR) if and only if f(L)f(R)=f(L)fR. Since f(L)f(R)=f(L)(f(L)f(R)), this happens if and only if f(L)(f(L)f(R))=f(L)fR. Because f(L)f(R) and fR are both subsets of f(L), the condition on the right hand side happens if and only if f(L)f(R)=fR. Because fRf(RL)f(L)f(R), the equality f(L)f(R)=fR holds if and only if f(L)f(R)fR. If f(R)f(L) (such as when L=X or RL) then f(L)f(R)fR if and only if f(R)fR. In particular, taking L=X proves: f(XR)=f(X)f(R) if and only if f(R){yf(RX):f1(y)R}, where f(RX)=f(R).
  2. Let P:={yY:Lf1(y)R} and let () denote the set equality f(LR)=YP, which will now be proven. If yYP then Lf1(y)⊈R so there exists some xLf1(y)R; now f1(y)X implies xLXR so that y=f(x)f(LXR)=f(LR). To prove the reverse inclusion f(LR)YP, let yf(LR) so that there exists some xXLR such that y=f(x). Then xLf1(y)R so that Lf1(y)⊈R and thus y∉P, which proves that yYP, as desired. Defining Q:=f(L)P={yf(L):Lf1(y)R}, the identity f(LR)=f(L)Q follows from () and the inclusions f(LR)f(L)Y.

Citations

  1. Taylor, Courtney (March 31, 2019). "What Is Symmetric Difference in Math?" (in en). https://www.thoughtco.com/what-is-the-symmetric-difference-3126594. 
  2. Weisstein, Eric W.. "Symmetric Difference" (in en). https://mathworld.wolfram.com/SymmetricDifference.html. 
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 Monk 1969, pp. 24-54.
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Császár 1978, pp. 15-26.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Császár 1978, pp. 102-120.
  6. Kelley 1985, p. 85
  7. See Munkres 2000, p. 21
  8. Lee p.388 of Lee, John M. (2010). Introduction to Topological Manifolds, 2nd Ed.
  9. 9.0 9.1 Lee Halmos 1960, p. 39
  10. 10.0 10.1 Lee Munkres 2000, p. 19
  11. 11.0 11.1 11.2 11.3 11.4 Durrett 2019, pp. 1-8.
  12. 12.0 12.1 12.2 12.3 Császár 1978, pp. 53-65.
  13. 13.0 13.1 13.2 13.3 "Algebra of sets". 16 August 2013. https://encyclopediaofmath.org/wiki/Algebra_of_sets. 

References