List of mathematical series

From HandWiki
Short description: none


This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums.

Sums of powers

See Faulhaber's formula.

  • k=0mkn1=Bn(m+1)Bnn

The first few values are:

  • k=1mk=m(m+1)2
  • k=1mk2=m(m+1)(2m+1)6=m33+m22+m6
  • k=1mk3=[m(m+1)2]2=m44+m32+m24

See zeta constants.

  • ζ(2n)=k=11k2n=(1)n+1B2n(2π)2n2(2n)!

The first few values are:

  • ζ(2)=k=11k2=π26 (the Basel problem)
  • ζ(4)=k=11k4=π490
  • ζ(6)=k=11k6=π6945

Power series

Low-order polylogarithms

Finite sums:

  • k=mnzk=zmzn+11z, (geometric series)
  • k=0nzk=1zn+11z
  • k=1nzk=1zn+11z1=zzn+11z
  • k=1nkzk=z1(n+1)zn+nzn+1(1z)2
  • k=1nk2zk=z1+z(n+1)2zn+(2n2+2n1)zn+1n2zn+2(1z)3
  • k=1nkmzk=(zddz)m1zn+11z

Infinite sums, valid for |z|<1 (see polylogarithm):

  • Lin(z)=k=1zkkn

The following is a useful property to calculate low-integer-order polylogarithms recursively in closed form:

  • ddzLin(z)=Lin1(z)z
  • Li1(z)=k=1zkk=ln(1z)
  • Li0(z)=k=1zk=z1z
  • Li1(z)=k=1kzk=z(1z)2
  • Li2(z)=k=1k2zk=z(1+z)(1z)3
  • Li3(z)=k=1k3zk=z(1+4z+z2)(1z)4
  • Li4(z)=k=1k4zk=z(1+z)(1+10z+z2)(1z)5

Exponential function

  • k=0zkk!=ez
  • k=0kzkk!=zez (cf. mean of Poisson distribution)
  • k=0k2zkk!=(z+z2)ez (cf. second moment of Poisson distribution)
  • k=0k3zkk!=(z+3z2+z3)ez
  • k=0k4zkk!=(z+7z2+6z3+z4)ez
  • k=0knzkk!=zddzk=0kn1zkk!=ezTn(z)

where Tn(z) is the Touchard polynomials.

Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions relationship

  • k=0(1)kz2k+1(2k+1)!=sinz
  • k=0z2k+1(2k+1)!=sinhz
  • k=0(1)kz2k(2k)!=cosz
  • k=0z2k(2k)!=coshz
  • k=1(1)k1(22k1)22kB2kz2k1(2k)!=tanz,|z|<π2
  • k=1(22k1)22kB2kz2k1(2k)!=tanhz,|z|<π2
  • k=0(1)k22kB2kz2k1(2k)!=cotz,|z|<π
  • k=022kB2kz2k1(2k)!=cothz,|z|<π
  • k=0(1)k1(22k2)B2kz2k1(2k)!=cscz,|z|<π
  • k=0(22k2)B2kz2k1(2k)!=cschz,|z|<π
  • k=0(1)kE2kz2k(2k)!=sechz,|z|<π2
  • k=0E2kz2k(2k)!=secz,|z|<π2
  • k=1(1)k1z2k(2k)!=verz (versine)
  • k=1(1)k1z2k2(2k)!=havz[1] (haversine)
  • k=0(2k)!z2k+122k(k!)2(2k+1)=arcsinz,|z|1
  • k=0(1)k(2k)!z2k+122k(k!)2(2k+1)=arcsinhz,|z|1
  • k=0(1)kz2k+12k+1=arctanz,|z|<1
  • k=0z2k+12k+1=arctanhz,|z|<1
  • ln2+k=1(1)k1(2k)!z2k22k+1k(k!)2=ln(1+1+z2),|z|1
  • k=2(karctanh(1k)1)=3ln(4π)2

Modified-factorial denominators

  • k=0(4k)!24k2(2k)!(2k+1)!zk=11zz,|z|<1[2]
  • k=022k(k!)2(k+1)(2k+1)!z2k+2=(arcsinz)2,|z|1[2]
  • n=0k=0n1(4k2+α2)(2n)!z2n+n=0αk=0n1[(2k+1)2+α2](2n+1)!z2n+1=eαarcsinz,|z|1

Binomial coefficients

Harmonic numbers

(See harmonic numbers, themselves defined Hn=j=1n1j, and H(x) generalized to the real numbers)

  • k=1Hkzk=ln(1z)1z,|z|<1
  • k=1Hkk+1zk+1=12[ln(1z)]2,|z|<1
  • k=1(1)k1H2k2k+1z2k+1=12arctanzlog(1+z2),|z|<1[2]
  • n=0k=02n(1)k2k+1z4n+24n+2=14arctanzlog1+z1z,|z|<1[2]
  • n=0x2n2(n+x)=xπ26H(x)

Binomial coefficients

Main page: Binomial coefficient
  • k=0n(nk)=2n
  • k=0n(nk)2=(2nn)
  • k=0n(1)k(nk)=0, where n1
  • k=0n(km)=(n+1m+1)
  • k=0n(m+k1k)=(n+mn) (see Multiset)
  • k=0n(αk)(βnk)=(α+βn),where α+βn (see Vandermonde identity)
  • A  𝒫(E)1=2n, where E is a finite set, and card(E) = n
  • {(A, B)  (𝒫(E))2A  B1=3n, where E is a finite set, and card(E) = n
  • A  𝒫(E)card(A)=n2n1, where E is a finite set, and card(E) = n

Trigonometric functions

Sums of sines and cosines arise in Fourier series.

  • k=1cos(kθ)k=12ln(22cosθ)=ln(2sinθ2),0<θ<2π
  • k=1sin(kθ)k=πθ2,0<θ<2π
  • k=1(1)k1kcos(kθ)=12ln(2+2cosθ)=ln(2cosθ2),0θ<π
  • k=1(1)k1ksin(kθ)=θ2,π2θπ2
  • k=1cos(2kθ)2k=12ln(2sinθ),0<θ<π
  • k=1sin(2kθ)2k=π2θ4,0<θ<π
  • k=0cos[(2k+1)θ]2k+1=12ln(cotθ2),0<θ<π
  • k=0sin[(2k+1)θ]2k+1=π4,0<θ<π,[4]
  • k=1sin(2πkx)k=π(12{x}), x
  • k=1sin(2πkx)k2n1=(1)n(2π)2n12(2n1)!B2n1({x}), x, n
  • k=1cos(2πkx)k2n=(1)n1(2π)2n2(2n)!B2n({x}), x, n
  • Bn(x)=n!2n1πnk=11kncos(2πkxπn2),0<x<1[5]
  • k=0nsin(θ+kα)=sin(n+1)α2sin(θ+nα2)sinα2
  • k=0ncos(θ+kα)=sin(n+1)α2cos(θ+nα2)sinα2
  • k=1n1sinπkn=cotπ2n
  • k=1n1sin2πkn=0
  • k=0n1csc2(θ+πkn)=n2csc2(nθ)[6]
  • k=1n1csc2πkn=n213
  • k=1n1csc4πkn=n4+10n21145

Rational functions

  • n=a+1an2a2=12H2a[7]
  • n=01n2+a2=1+aπcoth(aπ)2a2
  • n=0(1)nn2+a2=1+aπcsch(aπ)2a2
  • n=0(2n+1)(1)n(2n+1)2+a2=π4sech(aπ2)
  • n=01n4+4a4=18a4+π(sinh(2πa)+sin(2πa))8a3(cosh(2πa)cos(2πa))
  • An infinite series of any rational function of n can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition,[8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

Exponential function

  • 1pn=0p1exp(2πin2qp)=eπi/42qn=02q1exp(πin2p2q)(see the Landsberg–Schaar relation)
  • n=eπn2=π4Γ(34)

Numeric series

These numeric series can be found by plugging in numbers from the series listed above.

Alternating harmonic series

  • k=1(1)k+1k=1112+1314+=ln2
  • k=1(1)k+12k1=1113+1517+19=π4

Sum of reciprocal of factorials

  • k=01k!=10!+11!+12!+13!+14!+=e
  • k=01(2k)!=10!+12!+14!+16!+18!+=12(e+1e)=cosh1
  • k=01(3k)!=10!+13!+16!+19!+112!+=13(e+2ecos32)
  • k=01(4k)!=10!+14!+18!+112!+116!+=12(cos1+cosh1)

Trigonometry and π

  • k=0(1)k(2k+1)!=11!13!+15!17!+19!+=sin1
  • k=0(1)k(2k)!=10!12!+14!16!+18!+=cos1
  • k=11k2+1=12+15+110+117+=12(πcothπ1)
  • k=1(1)kk2+1=12+15110+117+=12(πcschπ1)
  • 3+42×3×444×5×6+46×7×848×9×10+=π

Reciprocal of triangular numbers

  • k=11Tk=11+13+16+110+115+=2

Where Tn=k=1nk

Reciprocal of tetrahedral numbers

  • k=11Tek=11+14+110+120+135+=32

Where Ten=k=1nTk

Exponential and logarithms

  • k=01(2k+1)(2k+2)=11×2+13×4+15×6+17×8+19×10+=ln2
  • k=112kk=12+18+124+164+1160+=ln2
  • k=1(1)k+12kk+k=1(1)k+13kk=(12+13)(18+118)+(124+181)(164+1324)+=ln2
  • k=113kk+k=114kk=(13+14)+(118+132)+(181+1192)+(1324+11024)+=ln2

See also


Notes

References

  • Many books with a list of integrals also have a list of series.
  • π4=k=0(1)k2k+1