Lie operad

From HandWiki

In mathematics, the Lie operad is an operad whose algebras are Lie algebras. The notion (at least one version) was introduced by (Ginzburg Kapranov) in their formulation of Koszul duality.

Definition à la Ginzburg–Kapranov

Fix a base field k and let 𝒾(x1,,xn) denote the free Lie algebra over k with generators x1,,xn and 𝒾(n)𝒾(x1,,xn) the subspace spanned by all the bracket monomials containing each xi exactly once. The symmetric group Sn acts on 𝒾(x1,,xn) by permutations of the generators and, under that action, 𝒾(n) is invariant. The operadic composition is given by substituting expressions (with renumbered variables) for variables. Then, 𝒾={𝒾(n)} is an operad.[1]

Koszul-Dual

The Koszul-dual of 𝒾 is the commutative-ring operad, an operad whose algebras are the commutative rings over k.

Notes

References