Laguerre transform

From HandWiki

In mathematics, Laguerre transform is an integral transform named after the mathematician Edmond Laguerre, which uses generalized Laguerre polynomials Lnα(x) as kernels of the transform.[1][2][3][4]

The Laguerre transform of a function f(x) is

L{f(x)}=f~α(n)=0exxα Lnα(x) f(x) dx

The inverse Laguerre transform is given by

L1{f~α(n)}=f(x)=n=0(n+αn)11Γ(α+1)f~α(n)Lnα(x)

Some Laguerre transform pairs

f(x) f~α(n)
xa1, a>0 Γ(a+α)Γ(na+1)n!Γ(1a)
eax, a>1 Γ(n+α+1)ann!(a+1)n+α+1
sinax, a>0, α=0 an(1+a2)n+12sin[ntan11a+tan1(a)]
cosax, a>0, α=0 an(1+a2)n+12cos[ntan11a+tan1(a)]
Lmα(x) (n+αn)Γ(α+1)δmn
eaxLmα(x) Γ(n+α+1)Γ(m+α+1)n!m!Γ(α+1)(a1)nm+α+1an+m+2α+22F1(n+α+1;m+α+1α+1;1a2)[5]
f(x)xβα m=0n(m!)1(αβ)mLnmβ(x)
exxαΓ(α,x) n=0(n+αn)Γ(α+1)n+1
xβ, β>0 Γ(α+β+1)n=0(n+αn)(β)nΓ(α+1)Γ(n+α+1)
(1z)(α+1)exp(xzz1), |z|<1, α0 n=0(n+αn)Γ(α+1)zn
(xz)α/2ezJα[2(xz)1/2], |z|<1, α0 n=0(n+αn)Γ(α+1)Γ(n+α+1)zn
ddxf(x) f~α(n)αk=0nf~α1(k)+k=0n1f~α(k)
xddxf(x),α=0 (n+1)f~0(n+1)+nf~0(n)
0xf(t)dt, α=0 f~0(n)f~0(n1)
exxαddx[exxα+1ddx]f(x) nf~α(n)
{exxαddx[exxα+1ddx]}kf(x) (1)knkf~α(n)
Lnα(x),α>1 Γ(n+α+1)n!
xLnα(x),α>1 Γ(n+α+1)n!(2n+1+α)
1π0etf(t)dt0πextcosθcos(xtsinθ)g(x+t2xtcosθ)dθ,α=0 f~0(n)g~0(n)
Γ(n+α+1)πΓ(n+1)0ettαf(t)dt0πextcosθsin2αθg(x+t+2xtcosθ)Jα1/2(xtsinθ)[(xtsinθ)/2]α1/2dθ f~α(n)g~α(n)[6]

References

  1. Debnath, Lokenath, and Dambaru Bhatta. Integral transforms and their applications. CRC press, 2014.
  2. Debnath, L. "On Laguerre transform." Bull. Calcutta Math. Soc 52 (1960): 69-77.
  3. Debnath, L. "Application of Laguerre Transform on heat conduction problem." Annali dell’Università di Ferrara 10.1 (1961): 17-19.
  4. McCully, Joseph. "The Laguerre transform." SIAM Review 2.3 (1960): 185-191.
  5. Howell, W. T. "CI. A definite integral for legendre functions." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25.172 (1938): 1113-1115.
  6. Debnath, L. "On Faltung theorem of Laguerre transform." Studia Univ. Babes-Bolyai, Ser. Phys 2 (1969): 41-45.