Kuratowski convergence

From HandWiki

In mathematics, Kuratowski convergence or Painlevé-Kuratowski convergence is a notion of convergence for subsets of a topological space. First introduced by Paul Painlevé in lectures on mathematical analysis in 1902,[1] the concept was popularized in texts by Felix Hausdorff[2] and Kazimierz Kuratowski.[3] Intuitively, the Kuratowski limit of a sequence of sets is where the sets "accumulate".

Definitions

For a given sequence {xn}n=1 of points in a space X, a limit point of the sequence can be understood as any point xX where the sequence eventually becomes arbitrarily close to x. On the other hand, a cluster point of the sequence can be thought of as a point xX where the sequence frequently becomes arbitrarily close to x. The Kuratowski limits inferior and superior generalize this intuition of limit and cluster points to subsets of the given space X.

Metric Spaces

Let (X,d) be a metric space, where X is a given set. For any point x and any non-empty subset AX, define the distance between the point and the subset:

d(x,A):=infyAd(x,y),xX.

For any sequence of subsets {An}n=1 of X, the Kuratowski limit inferior (or lower closed limit) of An as n; isLiAn:={xX:for all open neighbourhoods U of x,UAn for large enough n}={xX:lim supnd(x,An)=0};the Kuratowski limit superior (or upper closed limit) of An as n; isLsAn:={xX:for all open neighbourhoods U of x,UAn for infinitely many n}={xX:lim infnd(x,An)=0};If the Kuratowski limits inferior and superior agree, then the common set is called the Kuratowski limit of An and is denoted LimnAn.

Topological Spaces

If (X,τ) is a topological space, and {Ai}iI are a net of subsets of X, the limits inferior and superior follow a similar construction. For a given point xX denote 𝒩(x) the collection of open neighbhorhoods of x. The Kuratowski limit inferior of {Ai}iI is the setLiAi:={xX:for all U𝒩(x) there exists i0I such that UAi if i0i},and the Kuratowski limit superior is the setLsAi:={xX:for all U𝒩(x) and iI there exists iI such that ii and UAi}.Elements of LiAi are called limit points of {Ai}iI and elements of LsAi are called cluster points of {Ai}iI. In other words, x is a limit point of {Ai}iI if each of its neighborhoods intersects Ai for all i in a "residual" subset of I, while x is a cluster point of {Ai}iI if each of its neighborhoods intersects Ai for all i in a cofinal subset of I.

When these sets agree, the common set is the Kuratowski limit of {Ai}iI, denoted LimAi.

Examples

  • Suppose (X,d) is separable where X is a perfect set, and let D={d1,d2,} be an enumeration of a countable dense subset of X. Then the sequence {An}n=1 defined by An:={d1,d2,,dn} has LimAn=X.
  • Given two closed subsets B,CX, defining A2n1:=B and A2n:=C for each n=1,2, yields LiAn=BC and LsAn=BC.
  • The sequence of closed balls An:={yX:d(xn,y)rn}converges in the sense of Kuratowski when xnx in X and rnr in [0,+), and in particular, Lim(An)={yX:d(x,y)r}. If rn+, then LimAn=X while Lim(XAn)=.
  • Let An:={x:sin(nx)=0}. Then An converges in the Kuratowski sense to the entire line.
  • In a topological vector space, if {An}n=1 is a sequence of cones, then so are the Kuratowski limits superior and inferior. For example, the sets An:={(x,y)2:yn|x|} converge to {(0,y)2:y0}.

Properties

The following properties hold for the limits inferior and superior in both the metric and topological contexts, but are stated in the metric formulation for ease of reading.[4]

  • Both LiAn and LsAn are closed subsets of X, and LiAnLsAn always holds.
  • The upper and lower limits do not distinguish between sets and their closures: LiAn=Licl(An) and LsAn=Lscl(An).
  • If An:=A is a constant sequence, then LimAn=clA.
  • If An:={xn} is a sequence of singletons, then LiAn and LsAn consist of the limit points and cluster points, respectively, of the sequence {xn}n=1X.
  • If AnBnCn and B:=LimAn=LimCn, then LimBn=B.
  • (Hit and miss criteria) For a closed subset AX, one has
    • ALiAn, if and only if for every open set UX with AU there exists n0 such that AnU for all n0n,
    • LsAnA, if and only if for every compact set KX with AK there exists n0 such that AnK for all n0n.
  • If A1A2A3 then the Kuratowski limit exists, and LimAn=cl(n=1An). Conversely, if A1A2A3 then the Kuratowski limit exists, and LimAn=n=1cl(An).
  • If dH denotes Hausdorff metric, then dH(An,A)0 implies clA=LimAn. However, noncompact closed sets may converge in the sense of Kuratowski while dH(An,LimAn)=+ for each n=1,2,[5]
  • Convergence in the sense of Kuratowski is weaker than convergence in the sense of Vietoris but equivalent to convergence in the sense of Fell. If X is compact, then these are all equivalent and agree with convergence in Hausdorff metric.

Kuratowski Continuity of Set-Valued Functions

Let S:XY be a set-valued function between the spaces X and Y; namely, S(x)Y for all xX. Denote S1(y)={xX:yS(x)}. We can define the operatorsLixxS(x):=xxLiS(x),xXLsxxS(x):=xxLsS(x),xXwhere xx means convergence in sequences when X is metrizable and convergence in nets otherwise. Then,

  • S is inner semi-continuous at xX if S(x)LixxS(x);
  • S is outer semi-continuous at xX if LsxxS(x)S(x).

When S is both inner and outer semi-continuous at xX, we say that S is continuous (or continuous in the sense of Kuratowski).

Continuity of set-valued functions is commonly defined in terms of lower- and upper-hemicontinuity popularized by Berge.[6] In this sense, a set-valued function is continuous if and only if the function fS:X2Y defined by f(x)=S(x) is continuous with respect to the Vietoris hyperspace topology of 2Y. For set-valued functions with closed values, continuity in the sense of Vietoris-Berge is stronger than continuity in the sense of Kuratowski.

Examples

  • The set-valued function B(x,r)={yX:d(x,y)r} is continuous X×[0,+)X.
  • Given a function f:X[,+], the superlevel set mapping Sf(x):={λ:f(x)λ} is outer semi-continuous at x, if and only if f is lower semi-continuous at x. Similarly, Sf is inner semi-continuous at x, if and only if f is upper semi-continuous at x.

Properties

  • If S is continuous at x, then S(x) is closed.
  • S is outer semi-continuous at x, if and only if for every yS(x) there are neighborhoods V𝒩(y) and U𝒩(x) such that US1(V)=.
  • S is inner semi-continuous at x, if and only if for every yS(x) and neighborhood V𝒩(y) there is a neighborhood U𝒩(x) such that VS(x) for all xU.
  • S is (globally) outer semi-continuous, if and only if its graph {(x,y)X×Y:yS(x)} is closed.
  • (Relations to Vietoris-Berge continuity). Suppose S(x) is closed.
    • S is inner semi-continuous at x, if and only if S is lower hemi-continuous at x in the sense of Vietoris-Berge.
    • If S is upper hemi-continuous at x, then S is outer semi-continuous at x. The converse is false in general, but holds when Y is a compact space.
  • If S:nmhas a convex graph, then S is inner semi-continuous at each point of the interior of the domain of S. Conversely, given any inner semi-continuous set-valued function S, the convex hull mapping T(x):=convS(x) is also inner semi-continuous.

Epi-convergence and Γ-convergence

Main pages: Epi-convergence and Γ-convergence

For the metric space (X,d) a sequence of functions fn:X[,+], the epi-limit inferior (or lower epi-limit) is the function elim inffn defined by the epigraph equationepi(elim inffn):=Ls(epifn),and similarly the epi-limit superior (or upper epi-limit) is the function elim supfn defined by the epigraph equationepi(elim supfn):=Li(epifn).Since Kuratowski upper and lower limits are closed sets, it follows that both elim inffn and elim supfn are lower semi-continuous functions. Similarly, since LiepifnLsepifn, it follows that elim inffnelim inffn uniformly. These functions agree, if and only if Limepifn exists, and the associated function is called the epi-limit of {fn}n=1.

When (X,τ) is a topological space, epi-convergence of the sequence {fn}n=1 is called Γ-convergence. From the perspective of Kuratowski convergence there is no distinction between epi-limits and Γ-limits. The concepts are usually studied separately, because epi-convergence admits special characterizations that rely on the metric space structure of X, which does not hold in topological spaces generally.

See also

Notes

  1. This is reported in the Commentary section of Chapter 4 of Rockafellar and Wets' text.
  2. Hausdorff, Felix (1927) (in de). Mengenlehre (2nd ed.). Berlin: Walter de Gruyter & Co.. 
  3. Kuratowski, Kazimierz (1933) (in fr). Topologie, I & II. Warsaw: Panstowowe Wyd Nauk. 
  4. The interested reader may consult Beer's text, in particular Chapter 5, Section 2, for these and more technical results in the topological setting. For Euclidean spaces, Rockafellar and Wets report similar facts in Chapter 4.
  5. For an example, consider the sequence of cones in the previous section.
  6. Rockafellar and Wets write in the Commentary to Chapter 6 of their text: "The terminology of 'inner' and 'outer' semicontinuity, instead of 'lower' and 'upper', has been foorced on us by the fact that the prevailing definition of 'upper semicontinuity' in the literature is out of step with developments in set convergence and the scope of applications that must be handled, now that mappings S with unbounded range and even unbounded value sets S(x) are so important... Despite the historical justification, the tide can no longer be turned in the meaning of 'upper semicontinuity', yet the concept of 'continuity' is too crucial for applications to be left in the poorly usable form that rests on such an unfortunately restrictive property [of upper semicontinuity]"; see pages 192-193. Note also that authors differ on whether "semi-continuity" or "hemi-continuity" is the preferred language for Vietoris-Berge continuity concepts.

References

  • Beer, Gerald (1993). Topologies on closed and closed convex sets. Mathematics and its Applications. Dordrecht: Kluwer Academic Publishers Group. pp. xii+340. 
  • Kuratowski, Kazimierz (1966). Topology. Volumes I and II. New edition, revised and augmented. Translated from the French by J. Jaworowski. New York: Academic Press. pp. xx+560.  MR0217751
  • Rockafellar, R. Tyrrell; Wets, Roger J.-B. (1998). Variational analysis. Berlin. ISBN 978-3-642-02431-3. OCLC 883392544. https://www.worldcat.org/oclc/883392544.