Jacobi transform

From HandWiki

In mathematics, Jacobi transform is an integral transform named after the mathematician Carl Gustav Jacob Jacobi, which uses Jacobi polynomials Pnα,β(x) as kernels of the transform .[1][2][3][4]

The Jacobi transform of a function F(x) is[5]

J{F(x)}=fα,β(n)=11(1x)α (1+x)β Pnα,β(x) F(x) dx

The inverse Jacobi transform is given by

J1{fα,β(n)}=F(x)=n=01δnfα,β(n)Pnα,β(x),whereδn=2α+β+1Γ(n+α+1)Γ(n+β+1)n!(α+β+2n+1)Γ(n+α+β+1)

Some Jacobi transform pairs

F(x) fα,β(n)
xm, m<n 0
xn n!(α+β+2n+1)δn
Pmα,β(x) δnδm,n
(1+x)aβ (n+αn)2α+a+1Γ(a+1)Γ(α+1)Γ(aβ+1)Γ(α+a+n+2)Γ(aβ+n+1)
(1x)σα, σ>1 2σ+β+1n!Γ(ασ)Γ(σ+1)Γ(n+β+1)Γ(ασ+n)Γ(β+σ+n+2)
(1x)σβPmα,σ(x), σ>1 2α+σ+1m!(nm)!Γ(n+α+1)Γ(α+β+m+n+1)Γ(σ+m+1)Γ(αβ+1)Γ(α+β+n+1)Γ(α+σ+m+n+2)Γ(αβ+m+1)
2α+βQ1(1z+Q)α(1+z+Q)β, Q=(12xz+z2)1/2, |z|<1 n=0δnzn
(1x)α(1+x)βddx[(1x)α+1(1+x)β+1ddx]F(x) n(n+α+β+1)fα,β(n)
{(1x)α(1+x)βddx[(1x)α+1(1+x)β+1ddx]}kF(x) (1)knk(n+α+β+1)kfα,β(n)

References

  1. Debnath, L. "On Jacobi Transform." Bull. Cal. Math. Soc 55.3 (1963): 113-120.
  2. Debnath, L. "SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS BY JACOBI TRANSFORM." BULLETIN OF THE CALCUTTA MATHEMATICAL SOCIETY 59.3-4 (1967): 155.
  3. Scott, E. J. "Jacobi transforms." (1953).
  4. Shen, Jie; Wang, Yingwei; Xia, Jianlin (2019). "Fast structured Jacobi-Jacobi transforms". Math. Comp. 88 (318): 1743–1772. doi:10.1090/mcom/3377. 
  5. Debnath, Lokenath, and Dambaru Bhatta. Integral transforms and their applications. CRC press, 2014.