Inverse gamma function

From HandWiki
Short description: Inverse of the gamma function
Graph of an inverse gamma function
Plot of inverse gamma function in the complex plane

In mathematics, the inverse gamma function Γ1(x) is the inverse function of the gamma function. In other words, y=Γ1(x) whenever Γ(y)=x. For example, Γ1(24)=5.[1] Usually, the inverse gamma function refers to the principal branch with domain on the real interval [β,+) and image on the real interval [α,+), where β=0.8856031[2] is the minimum value of the gamma function on the positive real axis and α=Γ1(β)=1.4616321[3] is the location of that minimum.[4]

Definition

The inverse gamma function may be defined by the following integral representation[5] Γ1(x)=a+bx+Γ(α)(1xttt21)dμ(t), where μ(t) is a Borel measure such that Γ(α)(1t2+1)dμ(t)<, and a and b are real numbers with b0.

Approximation

To compute the branches of the inverse gamma function one can first compute the Taylor series of Γ(x) near α. The series can then be truncated and inverted, which yields successively better approximations to Γ1(x). For instance, we have the quadratic approximation:[6]

Γ1(x)α+2(xΓ(α))Ψ(1, α)Γ(α).

The inverse gamma function also has the following asymptotic formula[7] Γ1(x)12+ln(x2π)W0(e1ln(x2π)), where W0(x) is the Lambert W function. The formula is found by inverting the Stirling approximation, and so can also be expanded into an asymptotic series.

Series expansion

To obtain a series expansion of the inverse gamma function one can first compute the series expansion of the reciprocal gamma function 1Γ(x) near the poles at the negative integers, and then invert the series.

Setting z=1x then yields, for the n th branch Γn1(z) of the inverse gamma function (n0)[8] Γn1(z)=n+(1)nn!z+ψ(0)(n+1)(n!z)2+(1)n(π2+9ψ(0)(n+1)23ψ(1)(n+1))6(n!z)3+O(1z4), where ψ(n)(x) is the polygamma function.

References

  1. Borwein, Jonathan M.; Corless, Robert M. (2017). "Gamma and Factorial in the Monthly". The American Mathematical Monthly 125 (5): 400–424. doi:10.1080/00029890.2018.1420983. 
  2. OEISA030171
  3. OEISA030169
  4. Uchiyama, Mitsuru (April 2012). "The principal inverse of the gamma function". Proceedings of the American Mathematical Society 140 (4): 1347. doi:10.1090/S0002-9939-2011-11023-2. 
  5. Pedersen, Henrik (9 September 2013). ""Inverses of gamma functions"". Constructive Approximation 7 (2): 251–267. doi:10.1007/s00365-014-9239-1. https://link.springer.com/article/10.1007/s00365-014-9239-1. 
  6. Corless, Robert M.; Amenyou, Folitse Komla; Jeffrey, David (2017). "Properties and Computation of the Functional Inverse of Gamma". International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). pp. 65. doi:10.1109/SYNASC.2017.00020. ISBN 978-1-5386-2626-9. 
  7. Amenyou, Folitse Komla; Jeffrey, David (2018). "Properties and Computation of the inverse of the Gamma Function" (MS). p. 28.
  8. Couto, Ana Carolina Camargos; Jeffrey, David; Corless, Robert (November 2020). "The Inverse Gamma Function and its Numerical Evaluation". Maple Conference Proceedings: Section 8. https://www.maplesoft.com/mapleconference/2020/highlights.aspx.