Integration by reduction formulae

From HandWiki
Short description: Integration technique using recurrence relations

In integral calculus, integration by reduction formulae is a method relying on recurrence relations. It is used when an expression containing an integer parameter, usually in the form of powers of elementary functions, or products of transcendental functions and polynomials of arbitrary degree, can't be integrated directly. But using other methods of integration a reduction formula can be set up to obtain the integral of the same or similar expression with a lower integer parameter, progressively simplifying the integral until it can be evaluated. [1] This method of integration is one of the earliest used.

How to find the reduction formula

The reduction formula can be derived using any of the common methods of integration, like integration by substitution, integration by parts, integration by trigonometric substitution, integration by partial fractions, etc. The main idea is to express an integral involving an integer parameter (e.g. power) of a function, represented by In, in terms of an integral that involves a lower value of the parameter (lower power) of that function, for example In-1 or In-2. This makes the reduction formula a type of recurrence relation. In other words, the reduction formula expresses the integral

In=f(x,n)dx,

in terms of

Ik=f(x,k)dx,

where

k<n.

How to compute the integral

To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1. Then we back-substitute the previous results until we have computed In. [2]

Examples

Below are examples of the procedure.

Cosine integral

Typically, integrals like

cosnxdx,

can be evaluated by a reduction formula.

cosn(x)dx, for n = 1, 2 ... 30

Start by setting:

In=cosnxdx.

Now re-write as:

In=cosn1xcosxdx,

Integrating by this substitution:

cosxdx=d(sinx),
In=cosn1xd(sinx).

Now integrating by parts:

cosnxdx=cosn1xsinxsinxd(cosn1x)=cosn1xsinx+(n1)sinxcosn2xsinxdx=cosn1xsinx+(n1)cosn2xsin2xdx=cosn1xsinx+(n1)cosn2x(1cos2x)dx=cosn1xsinx+(n1)cosn2xdx(n1)cosnxdx=cosn1xsinx+(n1)In2(n1)In,

solving for In:

In +(n1)In =cosn1xsinx + (n1)In2,
nIn =cosn1(x)sinx +(n1)In2,
In =1ncosn1xsinx +n1nIn2,

so the reduction formula is:

cosnxdx =1ncosn1xsinx+n1ncosn2xdx.

To supplement the example, the above can be used to evaluate the integral for (say) n = 5;

I5=cos5xdx.

Calculating lower indices:

n=5,I5=15cos4xsinx+45I3,
n=3,I3=13cos2xsinx+23I1,

back-substituting:

I1 =cosxdx=sinx+C1,
I3 =13cos2xsinx+23sinx+C2,C2 =23C1,
I5 =15cos4xsinx+45[13cos2xsinx+23sinx]+C,

where C is a constant.

Exponential integral

Another typical example is:

xneaxdx.

Start by setting:

In=xneaxdx.

Integrating by substitution:

xndx=d(xn+1)n+1,
In=1n+1eaxd(xn+1),

Now integrating by parts:

eaxd(xn+1)=xn+1eaxxn+1d(eax)=xn+1eaxaxn+1eaxdx,
(n+1)In=xn+1eaxaIn+1,

shifting indices back by 1 (so n + 1n, nn – 1):

nIn1=xneaxaIn,

solving for In:

In=1a(xneaxnIn1),

so the reduction formula is:

xneaxdx=1a(xneaxnxn1eaxdx).

An alternative way in which the derivation could be done starts by substituting eax.

Integration by substitution:

eaxdx=d(eax)a,

In=1axnd(eax),

Now integrating by parts:

xnd(eax)=xneaxeaxd(xn)=xneaxneaxxn1dx,

which gives the reduction formula when substituting back:

In=1a(xneaxnIn1),

which is equivalent to:

xneaxdx=1a(xneaxnxn1eaxdx).

Another alternative way in which the derivation could be done by integrating by parts:

In=xnxeaxdx,
u=xn ,  dv=eax,
dudx =nxn1 ,  v=eaxa 
In=xneaxa nxn1 eaxa dx 
In=xneaxa na xn1eax dx 

Remember:

In1=xn1eax dx 
 In=xneaxa na In1

which gives the reduction formula when substituting back:

In=1a(xneaxnIn1),

which is equivalent to:

xneaxdx=1a(xneaxnxn1eaxdx).

Tables of integral reduction formulas

Rational functions

The following integrals[3] contain:

  • Factors of the linear radical ax+b
  • Linear factors px+q and the linear radical ax+b
  • Quadratic factors x2+a2
  • Quadratic factors x2a2, for x>a
  • Quadratic factors a2x2, for x<a
  • (Irreducible) quadratic factors ax2+bx+c
  • Radicals of irreducible quadratic factors ax2+bx+c
Integral Reduction formula
In=xnax+bdx In=2xnax+ba(2n+1)2nba(2n+1)In1
In=dxxnax+b In=ax+b(n1)bxn1a(2n3)2b(n1)In1
In=xnax+bdx In=2xn(ax+b)3a(2n+3)2nba(2n+3)In1
Im,n=dx(ax+b)m(px+q)n Im,n={1(n1)(bpaq)[1(ax+b)m1(px+q)n1+a(m+n2)Im,n1]1(m1)(bpaq)[1(ax+b)m1(px+q)n1+p(m+n2)Im1,n]
Im,n=(ax+b)m(px+q)ndx Im,n={1(n1)(bpaq)[(ax+b)m+1(px+q)n1+a(nm2)Im,n1]1(nm1)p[(ax+b)m(px+q)n1+m(bpaq)Im1,n]1(n1)p[(ax+b)m(px+q)n1amIm1,n1]
Integral Reduction formula
In=(px+q)nax+bdx (px+q)nax+bdx=2(px+q)n+1ax+bp(2n+3)+bpaqp(2n+3)In

In=2(px+q)nax+ba(2n+1)+2n(aqbp)a(2n+1)In1

In=dx(px+q)nax+b ax+b(px+q)ndx=ax+bp(n1)(px+q)n1+a2p(n1)In

In=ax+b(n1)(aqbp)(px+q)n1+a(2n3)2(n1)(aqbp)In1

Integral Reduction formula
In=dx(x2+a2)n In=x2a2(n1)(x2+a2)n1+2n32a2(n1)In1
In,m=dxxm(x2+a2)n a2In,m=Im,n1Im2,n
In,m=xm(x2+a2)ndx In,m=Im2,n1a2Im2,n
Integral Reduction formula
In=dx(x2a2)n In=x2a2(n1)(x2a2)n12n32a2(n1)In1
In,m=dxxm(x2a2)n a2In,m=Im2,nIm,n1
In,m=xm(x2a2)ndx In,m=Im2,n1+a2Im2,n
Integral Reduction formula
In=dx(a2x2)n In=x2a2(n1)(a2x2)n1+2n32a2(n1)In1
In,m=dxxm(a2x2)n a2In,m=Im,n1+Im2,n
In,m=xm(a2x2)ndx In,m=a2Im2,nIm2,n1
Integral Reduction formula
In=dxxn(ax2+bx+c) cIn=1xn1(n1)+bIn1+aIn2
Im,n=xmdx(ax2+bx+c)n Im,n=xm1a(2nm1)(ax2+bx+c)n1b(nm)a(2nm1)Im1,n+c(m1)a(2nm1)Im2,n
Im,n=dxxm(ax2+bx+c)n c(m1)Im,n=1xm1(ax2+bx+c)n1+a(m+2n3)Im2,n+b(m+n2)Im1,n
Integral Reduction formula
In=(ax2+bx+c)ndx 8a(n+1)In+12=2(2ax+b)(ax2+bx+c)n+12+(2n+1)(4acb2)In12
In=1(ax2+bx+c)ndx (2n1)(4acb2)In+12=2(2ax+b)(ax2+bx+c)n12+8a(n1)In12

note that by the laws of indices:

In+12=I2n+12=1(ax2+bx+c)2n+12dx=1(ax2+bx+c)2n+1dx

Transcendental functions

The following integrals[4] contain:

  • Factors of sine
  • Factors of cosine
  • Factors of sine and cosine products and quotients
  • Products/quotients of exponential factors and powers of x
  • Products of exponential and sine/cosine factors
Integral Reduction formula
In=xnsinaxdx a2In=axncosax+nxn1sinaxn(n1)In2
Jn=xncosaxdx a2Jn=axnsinax+nxn1cosaxn(n1)Jn2
In=sinaxxndx

Jn=cosaxxndx

In=sinax(n1)xn1+an1Jn1

Jn=cosax(n1)xn1an1In1

the formulae can be combined to obtain separate equations in In:

Jn1=cosax(n2)xn2an2In2

In=sinax(n1)xn1an1[cosax(n2)xn2+an2In2]

In=sinax(n1)xn1a(n1)(n2)(cosaxxn2+aIn2)

and Jn:

In1=sinax(n2)xn2+an2Jn2

Jn=cosax(n1)xn1an1[sinax(n2)xn2+an2Jn2]

Jn=cosax(n1)xn1a(n1)(n2)(sinaxxn2+aJn2)

In=sinnaxdx anIn=sinn1axcosax+a(n1)In2
Jn=cosnaxdx anJn=sinaxcosn1ax+a(n1)Jn2
In=dxsinnax (n1)In=cosaxasinn1ax+(n2)In2
Jn=dxcosnax (n1)Jn=sinaxacosn1ax+(n2)Jn2
Integral Reduction formula
Im,n=sinmaxcosnaxdx Im,n={sinm1axcosn+1axa(m+n)+m1m+nIm2,nsinm+1axcosn1axa(m+n)+n1m+nIm,n2
Im,n=dxsinmaxcosnax Im,n={1a(n1)sinm1axcosn1ax+m+n2n1Im,n21a(m1)sinm1axcosn1ax+m+n2m1Im2,n
Im,n=sinmaxcosnaxdx Im,n={sinm1axa(n1)cosn1axm1n1Im2,n2sinm+1axa(n1)cosn1axmn+2n1Im,n2sinm1axa(mn)cosn1ax+m1mnIm2,n
Im,n=cosmaxsinnaxdx Im,n={cosm1axa(n1)sinn1axm1n1Im2,n2cosm+1axa(n1)sinn1axmn+2n1Im,n2cosm1axa(mn)sinn1ax+m1mnIm2,n
Integral Reduction formula
In=xneaxdx

n>0

In=xneaxanaIn1
In=xneaxdx

n>0

n1

In=eax(n1)xn1+an1In1
In=eaxsinnbxdx In=eaxsinn1bxa2+(bn)2(asinbxbncosbx)+n(n1)b2a2+(bn)2In2
In=eaxcosnbxdx In=eaxcosn1bxa2+(bn)2(acosbx+bnsinbx)+n(n1)b2a2+(bn)2In2

References

  1. Mathematical methods for physics and engineering, K.F. Riley, M.P. Hobson, S.J. Bence, Cambridge University Press, 2010, ISBN:978-0-521-86153-3
  2. Further Elementary Analysis, R.I. Porter, G. Bell & Sons Ltd, 1978, ISBN:0-7135-1594-5
  3. http://www.sosmath.com/tables/tables.html -> Indefinite integrals list
  4. http://www.sosmath.com/tables/tables.html -> Indefinite integrals list

Bibliography

  • Anton, Bivens, Davis, Calculus, 7th edition.