Incomplete Bessel functions

From HandWiki

In mathematics, the incomplete Bessel functions are types of special functions which act as a type of extension from the complete-type of Bessel functions.

Definition

The incomplete Bessel functions are defined as the same delay differential equations of the complete-type Bessel functions:

Jv1(z,w)Jv+1(z,w)=2zJv(z,w)
Yv1(z,w)Yv+1(z,w)=2zYv(z,w)
Iv1(z,w)+Iv+1(z,w)=2zIv(z,w)
Kv1(z,w)+Kv+1(z,w)=2zKv(z,w)
Hv1(1)(z,w)Hv+1(1)(z,w)=2zHv(1)(z,w)
Hv1(2)(z,w)Hv+1(2)(z,w)=2zHv(2)(z,w)

And the following suitable extension forms of delay differential equations from that of the complete-type Bessel functions:

Jv1(z,w)+Jv+1(z,w)=2vzJv(z,w)2tanhvwzwJv(z,w)
Yv1(z,w)+Yv+1(z,w)=2vzYv(z,w)2tanhvwzwYv(z,w)
Iv1(z,w)Iv+1(z,w)=2vzIv(z,w)2tanhvwzwIv(z,w)
Kv1(z,w)Kv+1(z,w)=2vzKv(z,w)+2tanhvwzwKv(z,w)
Hv1(1)(z,w)+Hv+1(1)(z,w)=2vzHv(1)(z,w)2tanhvwzwHv(1)(z,w)
Hv1(2)(z,w)+Hv+1(2)(z,w)=2vzHv(2)(z,w)2tanhvwzwHv(2)(z,w)

Where the new parameter w defines the integral bound of the upper-incomplete form and lower-incomplete form of the modified Bessel function of the second kind:[1]

Kv(z,w)=wezcoshtcoshvtdt
Jv(z,w)=0wezcoshtcoshvtdt

Properties

Jv(z,w)=Jv(z)+evπi2J(iz,v,w)evπi2J(iz,v,w)iπ
Yv(z,w)=Yv(z)+evπi2J(iz,v,w)+evπi2J(iz,v,w)π
Iv(z,w)=Iv(z,w) for integer v
Iv(z,w)Iv(z,w)=Iv(z)Iv(z)2sinvππJ(z,v,w)
Iv(z,w)=Iv(z)+J(z,v,w)evπiJ(z,v,w)iπ
Iv(z,w)=evπi2Jv(iz,w)
Kv(z,w)=Kv(z,w)
Kv(z,w)=π2Iv(z,w)Iv(z,w)sinvπ for non-integer v
Hv(1)(z,w)=Jv(z,w)+iYv(z,w)
Hv(2)(z,w)=Jv(z,w)iYv(z,w)
Hv(1)(z,w)=evπiHv(1)(z,w)
Hv(2)(z,w)=evπiHv(2)(z,w)
Hv(1)(z,w)=Jv(z,w)evπiJv(z,w)isinvπ=Yv(z,w)evπiYv(z,w)sinvπ for non-integer v
Hv(2)(z,w)=evπiJv(z,w)Jv(z,w)isinvπ=Yv(z,w)evπiYv(z,w)sinvπ for non-integer v

Differential equations

Kv(z,w) satisfies the inhomogeneous Bessel's differential equation

z2d2ydz2+zdydz(x2+v2)y=(vsinhvw+zcoshvwsinhw)ezcoshw

Both Jv(z,w) , Yv(z,w) , Hv(1)(z,w) and Hv(2)(z,w) satisfy the partial differential equation

z22yz2+zyz+(z2v2)y2yw2+2vtanhvwyw=0

Both Iv(z,w) and Kv(z,w) satisfy the partial differential equation

z22yz2+zyz(z2+v2)y2yw2+2vtanhvwyw=0

Integral representations

Base on the preliminary definitions above, one would derive directly the following integral forms of Jv(z,w) , Yv(z,w):

Jv(z,w)=Jv(z)+1πi(0wevπi2izcoshtcoshvtdt0weizcoshtvπi2coshvtdt)=Jv(z)+1πi(0wcos(zcoshtvπ2)coshvtdti0wsin(zcoshtvπ2)coshvtdt0wcos(zcoshtvπ2)coshvtdti0wsin(zcoshtvπ2)coshvtdt)=Jv(z)+1πi(2i0wsin(zcoshtvπ2)coshvtdt)=Jv(z)2π0wsin(zcoshtvπ2)coshvtdt
Yv(z,w)=Yv(z)+1π(0wevπi2izcoshtcoshvtdt+0weizcoshtvπi2coshvtdt)=Yv(z)+1π(0wcos(zcoshtvπ2)coshvtdti0wsin(zcoshtvπ2)coshvtdt+0wcos(zcoshtvπ2)coshvtdt+i0wsin(zcoshtvπ2)coshvtdt)=Yv(z)+2π0wcos(zcoshtvπ2)coshvtdt

With the Mehler–Sonine integral expressions of Jv(z)=2π0sin(zcoshtvπ2)coshvtdt and Yv(z)=2π0cos(zcoshtvπ2)coshvtdt mentioned in Digital Library of Mathematical Functions,[2]

we can further simplify to Jv(z,w)=2πwsin(zcoshtvπ2)coshvtdt and Yv(z,w)=2πwcos(zcoshtvπ2)coshvtdt , but the issue is not quite good since the convergence range will reduce greatly to |v|<1.

References

  1. Jones, D. S. (February 2007). "Incomplete Bessel functions. I". Proceedings of the Edinburgh Mathematical Society 50 (1): 173–183. doi:10.1017/S0013091505000490. 
  2. Paris, R. B. (2010), "Bessel Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, http://dlmf.nist.gov/10.9.8 
  • Agrest, Matest M.; Maksimov, Michail S. (1971). Theory of Incomplete Cylindrical Functions and their Applications. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. ISBN 978-3-642-65023-9. 
  • Cicchetti, R.; Faraone, A. (December 2004). "Incomplete Hankel and Modified Bessel Functions: A Class of Special Functions for Electromagnetics". IEEE Transactions on Antennas and Propagation 52 (12): 3373–3389. doi:10.1109/TAP.2004.835269. Bibcode2004ITAP...52.3373C. 
  • Jones, D. S. (October 2007). "Incomplete Bessel functions. II. Asymptotic expansions for large argument". Proceedings of the Edinburgh Mathematical Society 50 (3): 711–723. doi:10.1017/S0013091505000908.