Immanant

From HandWiki
Short description: Mathematical function generalizing the determinant and permanent

In mathematics, the immanant of a matrix was defined by Dudley E. Littlewood and Archibald Read Richardson as a generalisation of the concepts of determinant and permanent.

Let λ=(λ1,λ2,) be a partition of an integer n and let χλ be the corresponding irreducible representation-theoretic character of the symmetric group Sn. The immanant of an n×n matrix A=(aij) associated with the character χλ is defined as the expression

Immλ(A)=σSnχλ(σ)a1σ(1)a2σ(2)anσ(n).

Examples

The determinant is a special case of the immanant, where χλ is the alternating character sgn, of Sn, defined by the parity of a permutation.

The permanent is the case where χλ is the trivial character, which is identically equal to 1.

For example, for 3×3 matrices, there are three irreducible representations of S3, as shown in the character table:

S3 e (1 2) (1 2 3)
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

As stated above, χ1 produces the permanent and χ2 produces the determinant, but χ3 produces the operation that maps as follows:

(a11a12a13a21a22a23a31a32a33)2a11a22a33a12a23a31a13a21a32

Properties

The immanant shares several properties with determinant and permanent. In particular, the immanant is multilinear in the rows and columns of the matrix; and the immanant is invariant under simultaneous permutations of the rows or columns by the same element of the symmetric group.

Littlewood and Richardson studied the relation of the immanant to Schur functions in the representation theory of the symmetric group.

The necessary and sufficient conditions for the immanant of a Gram matrix to be 0 are given by Gamas's Theorem.

References

  • D. E. Littlewood; A.R. Richardson (1934). "Group characters and algebras". Philosophical Transactions of the Royal Society A 233 (721–730): 99–124. doi:10.1098/rsta.1934.0015. Bibcode1934RSPTA.233...99L. 
  • D. E. Littlewood (1950). The Theory of Group Characters and Matrix Representations of Groups (2nd ed.). Oxford Univ. Press (reprinted by AMS, 2006). p. 81.