Hermite transform

From HandWiki

In mathematics, Hermite transform is an integral transform named after the mathematician Charles Hermite, which uses Hermite polynomials Hn(x) as kernels of the transform. This was first introduced by Lokenath Debnath in 1964.[1][2][3][4] The Hermite transform of a function F(x) is H{F(x)}=fH(n)=ex2 Hn(x) F(x) dx

The inverse Hermite transform is given by H1{fH(n)}=F(x)=n=01π2nn!fH(n)Hn(x)

Some Hermite transform pairs

F(x) fH(n)
xm {m!π2mn(mn2)!,(mn) even and00,otherwise[5]
eax πanea2/4
e2xtt2, |t|<12 π(2t)n
Hm(x) π2nn!δnm
x2Hm(x) 2nn!π{1,n=m+2(n+12),n=m(n+1)(n+2),n=m20,otherwise
ex2Hm(x) (1)pm2p1/2Γ(p+1/2), m+n=2p, p
Hm2(x) {2m+n/2π(mn/2)m!n!(n/2)!,n even and2m0,otherwise[6]
Hm(x)Hp(x) {2kπm!n!p!(km)!(kn)!(kp)!,n+m+p=2k, k; |mp|nm+p0,otherwise[7]
Hn+p+q(x)Hp(x)Hq(x) π2n+p+q(n+p+q)!
dmdxmF(x) fH(n+m)
xdmdxmF(x) nfH(n+m1)+12fH(n+m+1)
ex2ddx[ex2ddxF(x)] 2nfH(n)
F(xx0) πk=0(x0)kk!fH(n+k)
F(x)*G(x) π(1)n[22n+1Γ(n+32)]1fH(n)gH(n)[8]
ez2sin(xz), |z|<12  {π(1)n2(2z)n,nodd0,neven
(1z2)1/2exp[2xyz(x2+y2)z2(1z2)] πznHn(y)[9][10]
Hm(y)Hm+1(x)Hm(x)Hm+1(y)2m+1m!(xy) {πHn(y)nm0n>m

References

  1. Debnath, L. (1964). "On Hermite transform". Matematički Vesnik 1 (30): 285–292. 
  2. Debnath; Lokenath; Bhatta, Dambaru (2014). Integral transforms and their applications. CRC Press. ISBN 9781482223576. 
  3. Debnath, L. (1968). "Some operational properties of Hermite transform". Matematički Vesnik 5 (43): 29–36. 
  4. Dimovski, I. H.; Kalla, S. L. (1988). "Convolution for Hermite transforms". Math. Japonica 33: 345–351. 
  5. McCully, Joseph Courtney; Churchill, Ruel Vance (1953) (in en-US), Hermite and Laguerre integral transforms : preliminary report, http://deepblue.lib.umich.edu/handle/2027.42/6521 
  6. Feldheim, Ervin (1938). "Quelques nouvelles relations pour les polynomes d'Hermite" (in fr). Journal of the London Mathematical Society s1-13: 22–29. doi:10.1112/jlms/s1-13.1.22. 
  7. Bailey, W. N. (1939). "On Hermite polynomials and associated Legendre functions". Journal of the London Mathematical Society s1-14 (4): 281–286. doi:10.1112/jlms/s1-14.4.281. 
  8. Glaeske, Hans-Jürgen (1983). "On a convolution structure of a generalized Hermite transformation". Serdica Bulgariacae Mathematicae Publicationes 9 (2): 223–229. http://www.math.bas.bg/serdica/1983/1983-223-229.pdf. 
  9. Erdélyi et al. 1955, p. 194, 10.13 (22).
  10. Mehler, F. G. (1866), "Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung" (in de), Journal für die Reine und Angewandte Mathematik (66): 161–176, ERAM 066.1720cj, ISSN 0075-4102, http://resolver.sub.uni-goettingen.de/purl?GDZPPN002152975 . See p. 174, eq. (18) and p. 173, eq. (13).

Sources