Heine's identity

From HandWiki
Short description: Fourier expansion of a reciprocal square root

In mathematical analysis, Heine's identity, named after Heinrich Eduard Heine[1] is a Fourier expansion of a reciprocal square root which Heine presented as 1zcosψ=2πm=Qm12(z)eimψ where[2] Qm12 is a Legendre function of the second kind, which has degree, m − ​12, a half-integer, and argument, z, real and greater than one. This expression can be generalized[3] for arbitrary half-integer powers as follows (zcosψ)n12=2π(z21)n2Γ(12n)m=Γ(mn+12)Γ(m+n+12)Qm12n(z)eimψ, where Γ is the Gamma function.

References

  1. Heine, Heinrich Eduard (1881). Handbuch der Kugelfunctionen, Theorie und Andwendungen. Wuerzburg: Physica-Verlag.  (See page 286)
  2. Cohl, Howard S.; J.E. Tohline; A.R.P. Rau; H.M. Srivastava (2000). "Developments in determining the gravitational potential using toroidal functions". Astronomische Nachrichten 321 (5/6): 363–372. doi:10.1002/1521-3994(200012)321:5/6<363::AID-ASNA363>3.0.CO;2-X. ISSN 0004-6337. Bibcode2000AN....321..363C. 
  3. Cohl, H. S. (2003). "Portent of Heine's Reciprocal Square Root Identity". 293. ISBN 1-58381-140-0.