Heilbronn set

From HandWiki

In mathematics, a Heilbronn set is an infinite set S of natural numbers for which every real number can be arbitrarily closely approximated by a fraction whose denominator is in S. For any given real number θ and natural number h, it is easy to find the integer g such that g/h is closest to θ. For example, for the real number π and h=100 we have g=314. If we call the closeness of θ to g/h the difference between hθ and g, the closeness is always less than 1/2 (in our example it is 0.15926...). A collection of numbers is a Heilbronn set if for any θ we can always find a sequence of values for h in the set where the closeness tends to zero. More mathematically let α denote the distance from α to the nearest integer then is a Heilbronn set if and only if for every real number θ and every ε>0 there exists h such that hθ<ε.[1]

Examples

The natural numbers are a Heilbronn set as Dirichlet's approximation theorem shows that there exists q<[1/ε] with qθ<ε.

The kth powers of integers are a Heilbronn set. This follows from a result of I. M. Vinogradov who showed that for every N and k there exists an exponent ηk>0 and q<N such that qkθNηk.[2] In the case k=2 Hans Heilbronn was able to show that η2 may be taken arbitrarily close to 1/2.[3] Alexandru Zaharescu has improved Heilbronn's result to show that η2 may be taken arbitrarily close to 4/7.[4]

Any Van der Corput set is also a Heilbronn set.

Example of a non-Heilbronn set

The powers of 10 are not a Heilbronn set. Take ε=0.001 then the statement that 10kθ<ε for some k is equivalent to saying that the decimal expansion of θ has run of three zeros or three nines somewhere. This is not true for all real numbers.

References

  1. Montgomery, Hugh Lowell (1994). Ten lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. CBMS Regional Conference Series in Mathematics. 84. Providence Rhode Island: American Mathematical Society. ISBN 0-8218-0737-4. 
  2. Vinogradov, I. M. (1927). "Analytischer Beweis des Satzes uber die Verteilung der Bruchteile eines ganzen Polynoms". Bull. Acad. Sci. USSR 21 (6): 567–578. 
  3. Heilbronn, Hans (1948). "On the distribution of the sequence n2θ(mod1)". Q. J. Math.. First Series 19: 249–256. doi:10.1093/qmath/os-19.1.249. 
  4. Zaharescu, Alexandru (1995). "Small values of n2α(mod1)". Invent. Math. 121 (2): 379–388. doi:10.1007/BF01884304.