Heath-Brown–Moroz constant

From HandWiki

The Heath-Brown–Moroz constant C, named for Roger Heath-Brown and Boris Moroz, is defined as

C=p(11p)7(1+7p+1p2)=0.001317641...

where p runs over the primes.[1][2]

Application

This constant is part of an asymptotic estimate for the distribution of rational points of bounded height on the cubic surface X03=X1X2X3. Let H be a positive real number and N(H) the number of solutions to the equation X03=X1X2X3 with all the Xi non-negative integers less than or equal to H and their greatest common divisor equal to 1. Then

N(H)=CH(logH)64×6!+O(H(logH)5).

References

  1. D. R. Heath-Brown; B.Z. Moroz (1999). "The density of rational points on the cubic surface X03=X1X2X3". Mathematical Proceedings of the Cambridge Philosophical Society 125 (3): 385–395. doi:10.1017/S0305004198003089. Bibcode1999MPCPS.125..385H. https://ora.ox.ac.uk/objects/uuid:c0ac6ad5-577c-49a7-acdd-72b7f5865cb2. 
  2. Finch, S. R (2003). Mathematical Constants. Cambridge, England: Cambridge University Press.