Haar's Tauberian theorem

From HandWiki

In mathematical analysis, Haar's Tauberian theorem[1] named after Alfréd Haar, relates the asymptotic behaviour of a continuous function to properties of its Laplace transform. It is related to the integral formulation of the Hardy–Littlewood Tauberian theorem.

Simplified version by Feller

William Feller gives the following simplified form for this theorem:[2]

Suppose that f(t) is a non-negative and continuous function for t0, having finite Laplace transform

F(s)=0estf(t)dt

for s>0. Then F(s) is well defined for any complex value of s=x+iy with x>0. Suppose that F verifies the following conditions:

1. For y0 the function F(x+iy) (which is regular on the right half-plane x>0) has continuous boundary values F(iy) as x+0, for x0 and y0, furthermore for s=iy it may be written as

F(s)=Cs+ψ(s),

where ψ(iy) has finite derivatives ψ(iy),,ψ(r)(iy) and ψ(r)(iy) is bounded in every finite interval;

2. The integral

0eityF(x+iy)dy

converges uniformly with respect to tT for fixed x>0 and T>0;

3. F(x+iy)0 as y±, uniformly with respect to x0;

4. F(iy),,F(r)(iy) tend to zero as y±;

5. The integrals

y1eityF(r)(iy)dy and y2eityF(r)(iy)dy

converge uniformly with respect to tT for fixed y1<0, y2>0 and T>0.

Under these conditions

limttr[f(t)C]=0.

Complete version

A more detailed version is given in.[3]

Suppose that f(t) is a continuous function for t0, having Laplace transform

F(s)=0estf(t)dt

with the following properties

1. For all values s=x+iy with x>a the function F(s)=F(x+iy) is regular;

2. For all x>a, the function F(x+iy), considered as a function of the variable y, has the Fourier property ("Fourierschen Charakter besitzt") defined by Haar as for any δ>0 there is a value ω such that for all tT

|αβeiytF(x+iy)dy|<δ

whenever α,βω or α,βω.

3. The function F(s) has a boundary value for s=a of the form

F(s)=j=1Ncj(ssj)ρj+ψ(s)

where sj=a+iyj and ψ(a+iy) is an n times differentiable function of y and such that the derivative

|dnψ(a+iy)dyn|

is bounded on any finite interval (for the variable y)

4. The derivatives

dkF(a+iy)dyk

for k=0,,n1 have zero limit for y± and for k=n has the Fourier property as defined above.

5. For sufficiently large t the following hold

limy±a+iyx+iyestF(s)ds=0

Under the above hypotheses we have the asymptotic formula

limttneat[f(t)j=1NcjΓ(ρj)esjttρj1]=0.

References

  1. Haar, Alfred (December 1927). "Über asymptotische Entwicklungen von Funktionen" (in de). Mathematische Annalen 96 (1): 69–107. doi:10.1007/BF01209154. ISSN 0025-5831. http://link.springer.com/10.1007/BF01209154. 
  2. Feller, Willy (September 1941). "On the Integral Equation of Renewal Theory" (in en). The Annals of Mathematical Statistics 12 (3): 243–267. doi:10.1214/aoms/1177731708. ISSN 0003-4851. http://projecteuclid.org/euclid.aoms/1177731708. 
  3. Lipka, Stephan (1927). "Über asymptotische Entwicklungen der Mittag-Lefflerschen Funktion E_alpha(x)". Acta Sci. Math. (Szeged) 3:4-4: 211–223. http://acta.bibl.u-szeged.hu/13343/1/math_003_211-223.pdf.