Granville number

From HandWiki

In mathematics, specifically number theory, Granville numbers, also known as 𝒮-perfect numbers, are an extension of the perfect numbers.

The Granville set

In 1996, Andrew Granville proposed the following construction of a set 𝒮:[1]

Let 1𝒮, and for any integer n larger than 1, let n𝒮 if
dn,d<n,d𝒮dn.

A Granville number is an element of 𝒮 for which equality holds, that is, n is a Granville number if it is equal to the sum of its proper divisors that are also in 𝒮. Granville numbers are also called 𝒮-perfect numbers.[2]

General properties

The elements of 𝒮 can be k-deficient, k-perfect, or k-abundant. In particular, 2-perfect numbers are a proper subset of 𝒮.[1]

S-deficient numbers

Numbers that fulfill the strict form of the inequality in the above definition are known as 𝒮-deficient numbers. That is, the 𝒮-deficient numbers are the natural numbers for which the sum of their divisors in 𝒮 is strictly less than themselves:

dn,d<n,d𝒮d<n

S-perfect numbers

Numbers that fulfill equality in the above definition are known as 𝒮-perfect numbers.[1] That is, the 𝒮-perfect numbers are the natural numbers that are equal the sum of their divisors in 𝒮. The first few 𝒮-perfect numbers are:

6, 24, 28, 96, 126, 224, 384, 496, 1536, 1792, 6144, 8128, 14336, ... (sequence A118372 in the OEIS)

Every perfect number is also 𝒮-perfect.[1] However, there are numbers such as 24 which are 𝒮-perfect but not perfect. The only known 𝒮-perfect number with three distinct prime factors is 126 = 2 · 32 · 7.[2]

S-abundant numbers

Numbers that violate the inequality in the above definition are known as 𝒮-abundant numbers. That is, the 𝒮-abundant numbers are the natural numbers for which the sum of their divisors in 𝒮 is strictly greater than themselves:

dn,d<n,d𝒮d>n

They belong to the complement of 𝒮. The first few 𝒮-abundant numbers are:

12, 18, 20, 30, 42, 48, 56, 66, 70, 72, 78, 80, 84, 88, 90, 102, 104, ... (sequence A181487 in the OEIS)

Examples

Every deficient number and every perfect number is in 𝒮 because the restriction of the divisors sum to members of 𝒮 either decreases the divisors sum or leaves it unchanged. The first natural number that is not in 𝒮 is the smallest abundant number, which is 12. The next two abundant numbers, 18 and 20, are also not in 𝒮. However, the fourth abundant number, 24, is in 𝒮 because the sum of its proper divisors in 𝒮 is:

1 + 2 + 3 + 4 + 6 + 8 = 24

In other words, 24 is abundant but not 𝒮-abundant because 12 is not in 𝒮. In fact, 24 is 𝒮-perfect - it is the smallest number that is 𝒮-perfect but not perfect.

The smallest odd abundant number that is in 𝒮 is 2835, and the smallest pair of consecutive numbers that are not in 𝒮 are 5984 and 5985.[1]

References

  1. 1.0 1.1 1.2 1.3 1.4 "On a Sum of Divisors Problem". Publications de l'Institut mathématique 64 (78): 9–20. 1996. http://www.emis.de/journals/PIMB/078/n078p009.pdf. Retrieved 27 March 2011. 
  2. 2.0 2.1 de Koninck, Jean-Marie (2008). Those Fascinating Numbers. Providence, RI: American Mathematical Society. p. 40. ISBN 978-0-8218-4807-4. OCLC 317778112. https://archive.org/details/thosefascinating0000koni/page/40/mode/2up.