Glaeser's continuity theorem

From HandWiki
Short description: Characterizes the continuity of the derivative of the square roots of C2 functions

In mathematical analysis, Glaeser's continuity theorem is a characterization of the continuity of the derivative of the square roots of functions of class C2. It was introduced in 1963 by Georges Glaeser,[1] and was later simplified by Jean Dieudonné.[2]

The theorem states: Let f : U0+ be a function of class C2 in an open set U contained in n, then f is of class C1 in U if and only if its partial derivatives of first and second order vanish in the zeros of f.

References

  1. "Racine carrée d'une fonction différentiable". Annales de l'Institut Fourier 13 (2): 203–210. 1963. doi:10.5802/aif.146. http://www.numdam.org/item?id=AIF_1963__13_2_203_0. 
  2. "Sur un théorème de Glaeser". Journal d'Analyse Mathématique 23: 85–88. 1970. doi:10.1007/BF02795491.