GenI process
The GenI process[1] (/dʒiːnaɪ/ for Generic Intelligence) models team decision making by launching a chaotic competition between so-called ideas, where one idea after another dwindles out until exactly one remains. The decision statistics are completely determined by the process start configuration and match those known from quantum measurements. The random process accomplishes this in a natural way without any fine adjustment. Therefore, it is also of interest for the interpretation of physical processes. In mathematical terms, the GenI process describes a time-discrete stochastic process in the state space of the finite subsets of a countable set E, together with a mapping of the power set on E into an n-dimensional complex vector space. In principle, it can be classified as a Markov chain of first order, with variable transition probabilities .
There are two expressions of the GenI process, for and for .
GenI process on eigenvector swarms
Background
The GenI random process determines changes in the complex vector space from the random behavior of independent individuals within a swarm-like construct. The swarm has a superposition state , that controls the individual activities via a target function. The amplitudes are also called ideas (cf "Generalized Quantum Modeling" [2]). The swarm takes one of the eigenstates after a finite number of steps, with the well-defined probability . The individuals follow defined rules and are allowed to make mistakes, based on the processes in simulated shoals of fish.[3] The GenI algorithm starts a chaotic decision-making process as a competition of ideas, such as running in a team that has to choose from a limited number of solutions to a given task. In the course of the process, a selection mechanism leads to ideas becoming extinct one after the other until finally just one survives that represents the solution to the problem.
Definition
Terminology

Let E be a countable set and the set of finite subsets of E. Next the canonical basis in and , where i is the imaginary unit in .
A given maps each element of E into , so that . For a set the complex vector denotes its state with complex amplitudes . Each such set S is called an Eigenvector-swarm or E-swarm.
A pair with is a null pair. A tuple is called a null ring generated by , if .
A set is called a null set, if . A maximal null set is called the entropy of S and the entropy free residual swarm.
The term denotes the excitation of the swarm in index j.
Algorithm
Let be a series of swarms (as an instantiation of ) with the respective separation into a maximal null swarm and the entropy free residual swarm , the respective state and the excitations.
- Step: Set and start with a given swarm .
- Step: If , then finish the process.
- Step: Each element generates an additional null ring within the swarm.
- Step: Each null pair (including the newly generated) with , gets selected with probability (and "burned" in the next step).
- Step: For each selected null pair , t leaves the swarm with probability . Otherwise t stays and r leaves the swarm.
- Step: The resulting swarm is .
- Step: Set and start over with step 2.
Interpretation

As soon as the excitation disappears in each index, the process naturally comes to rest in step 4 (except for the hard abort condition in step 2), since no null pair is "burned" and the state of the swarm no longer changes. The role of the excitation here reminds of the dynamics of a grain of sand in the formation of the Chladnic sound figures. On the other hand, excitation as a target in step 5 leads to a systematic distortion from 50% likelihood for an individual to remain. This leads here to an improved tendency to reduce the excitation. The following interpretation is obvious based on biological swarm behavior:[3] Each individual tends to follow the rule "reduce the excitation". It remains free in its decision to do nothing (step 4), to follow the rule, or to disregard it (step 5).
Simulation
The reference implementation under JAVA[4] shows an excellent convergence of the process. The table shows an example of the result of 1000 simulation runs (each simulation run aborts after more than 500 iterations or for swarm sizes> 10 million for performance reasons):
target | 132 | 81 | 97 | 78 | 11 | 206 | 3 | 336 | 36 | 3 |
frequency | 135 | 74 | 99 | 76 | 15 | 189 | 1 | 357 | 36 | 1 |
sigma | 10.7 | 8.6 | 9.4 | 8.5 | 3.3 | 12.8 | 1.8 | 14.9 | 5.9 | 1.8 |
measurements scheduled | 1000 | of it divergent | 17 | convergent | 983 | |||||
statistics:
chi square value: 7.85 ; chi critical value at 95% confidence: 16.9 | ||||||||||
medium swarm size: 300,418 | sigma: 281,543 | maximal: 1,008,512 | minimal: 9,695 |
These results support the statement of convergence (hypothesis):
Let be a given E-swarm with , , , .
Let be a GenI process with .
Then
GenI process on Pauli swarms
The P(auli) process represents a special version of the GenI process for binary YES-NO decisions. It determines a time discrete stochastic process in the state space of finite subsets of a countable set E, together with a map from the power set on E into the complex matrix algebra , a perspective vector and a basis .
Background

The GenI random process determines changes in the complex vector space out of the random behavior of independent individuals within a swarm-like construct. The swarm S has an image in the complex matrix algebra. Together with a perspective , the state of the swarm is determined by . A basis is called the environment and represents the options under which the swarm makes a decision. This can also be the eigenvectors of itself and so create a self-reference. The environment, perspective and state of the swarm control the individual activities via a target variable (excitation). The amplitudes in the decomposition are also referred to as ideas with respect to the environment (see regarding "Generalized Quantum Modeling" [2]). The swarm takes one of the eigenstates after a finite number of steps, with the well-defined probability . The individuals follow defined rules and are allowed to make mistakes, based on the processes in simulated shoals of fish.[3] The GenI algorithm starts a chaotic decision-making process as a competition of ideas, such as running in a team that has two possible solutions to a given task. In the course of the process, a selection mechanism leads to the survival of only one of the two ideas that represents the solution to the problem. The model in principal allows a moving environment.
The special properties of the P-process also allow interpretations of physical processes (see in particular Carl Friedrich von Weizsäcker's ur-alternatives (archetypal objects),[5] which he outlined for the reconstruction of quantum mechanics).
Definition
Terminology
Let E be a countable set and the set of finite subsets of E. Next the Pauli matrices and the image of the Pauli group in the complex matrix algebra as its irreducible representation. Such a subset is called a Pauli-swarm or a P-swarm.
A given maps each element of E onto one element of the Pauli group, so that .
A basis is called an environment, a non zero vector a perspective.
For a swarm denotes its matrix image, its state with complex amplitudes at the given environment and perspective.
A pair with is a null pair. A tuple is called a null ring generated by , if .
A set is called null set, if . A maximal null set ist called the entropy of S and its entropy freed residual swarm.
The term denotes the excitation of the swarm.
Algorithm
Let be a series of swarms (as an instance von ) with the respective separation in a maximal null swarm and the entropy freed residual swarm , the respective states and the excitations.
- Step: Set and start with a given swarm .
- Step: If , then finish the process.
- Step: Each element generates an additional null ring within the swarm.
- Step: Each null pair (including the newly generated) gets selected with probability (and gets "burned" in next step).
- Step: For each selected null pair , t leaves the swarm with probability . Otherwise t stays and r leaves the swarm.
- Step: The resulting swarm is .
- Step: Set and start over with step 2.
Simulation

The reference implementation under JAVA[4] shows an excellent convergence of the process at any fixed environment and perspective according to the chart right hand.
The results support the statement of convergence (hypothesis):
Let be a given P-swarm with , , , at any fixed environment and perspective v.
Let be a P-process with .
Then , where .
References
- ↑ Genreith, Siegfried (2017). The Source of the Universe. Norderstedt: Books on Demand. pp. 44. ISBN 9783848223572. OCLC 1011107944.
- ↑ 2.0 2.1 Gabora, Liane; Kitto, Kirsty (2017). "Toward a Quantum Theory of Humor" (in English). Frontiers in Physics 4. doi:10.3389/fphy.2016.00053. ISSN 2296-424X.
- ↑ 3.0 3.1 3.2 COUZIN, IAIN D.; KRAUSE, JENS; JAMES, RICHARD; RUXTON, GRAEME D.; FRANKS, NIGEL R. (2002). "Collective Memory and Spatial Sorting in Animal Groups". Journal of Theoretical Biology 218 (1): 1–11. doi:10.1006/jtbi.2002.3065. PMID 12297066.
- ↑ 4.0 4.1 WSG (2018-01-17), BZuS: simulation software and test data for the GenI model (Java sources), https://github.com/genreith/BZuS, retrieved 2018-02-14
- ↑ Weizsäcker, Carl Friedrich, Freiherr von, 1912–2007. (1985) (in German), Aufbau der Physik, München: C. Hanser, ISBN 3446141421