Foster's theorem

From HandWiki

In probability theory, Foster's theorem, named after Gordon Foster,[1] is used to draw conclusions about the positive recurrence of Markov chains with countable state spaces. It uses the fact that positive recurrent Markov chains exhibit a notion of "Lyapunov stability" in terms of returning to any state while starting from it within a finite time interval.

Theorem

Consider an irreducible discrete-time Markov chain on a countable state space S having a transition probability matrix P with elements pij for pairs i, j in S. Foster's theorem states that the Markov chain is positive recurrent if and only if there exists a Lyapunov function V:S, such that V(i)0  iS and

  1. jSpijV(j)< for iF
  2. jSpijV(j)V(i)ε for all iF

for some finite set F and strictly positive ε.[2]

References

  1. Foster, F. G. (1953). "On the Stochastic Matrices Associated with Certain Queuing Processes". The Annals of Mathematical Statistics 24 (3): 355. doi:10.1214/aoms/1177728976. 
  2. Brémaud, P. (1999). "Lyapunov Functions and Martingales". Markov Chains. pp. 167. doi:10.1007/978-1-4757-3124-8_5. ISBN 978-1-4419-3131-3. https://archive.org/details/markovchainsgibb00brem_688.