Fisher–Tippett–Gnedenko theorem

From HandWiki

In statistics, the Fisher–Tippett–Gnedenko theorem (also the Fisher–Tippett theorem or the extreme value theorem) is a general result in extreme value theory regarding asymptotic distribution of extreme order statistics. The maximum of a sample of iid random variables after proper renormalization can only converge in distribution to one of only 3 possible distribution families: the Gumbel distribution, the Fréchet distribution, or the Weibull distribution. Credit for the extreme value theorem and its convergence details are given to Fréchet (1927),[1] Fisher and Tippett (1928),[2] Mises (1936),[3][4] and Gnedenko (1943).[5]

The role of the extremal types theorem for maxima is similar to that of central limit theorem for averages, except that the central limit theorem applies to the average of a sample from any distribution with finite variance, while the Fisher–Tippet–Gnedenko theorem only states that if the distribution of a normalized maximum converges, then the limit has to be one of a particular class of distributions. It does not state that the distribution of the normalized maximum does converge.

Statement

Let  X1,X2,,Xn  be an n-sized sample of independent and identically-distributed random variables, each of whose cumulative distribution function is  F. Suppose that there exist two sequences of real numbers  an>0  and  bn  such that the following limits converge to a non-degenerate distribution function:

limn𝒫{ max{X1,,Xn}bn anx }=G(x) ,

or equivalently:

limn( F( an x+bn ))n=G(x).

In such circumstances, the limiting distribution  G  belongs to either the Gumbel, the Fréchet, or the Weibull distribution family.[6]

In other words, if the limit above converges, then up to a linear change of coordinates G(x) will assume either the form:[7]

Gγ(x)=exp((1+γ x)(1γ)) for γ0 ,

with the non-zero parameter  γ  also satisfying  1+γ x>0  for every  x  value supported by  F  (for all values  x  for which  F(x)0 ). Otherwise it has the form:

G0(x)=exp( exp(x) ) for γ=0.

This is the cumulative distribution function of the generalized extreme value distribution (GEV) with extreme value index  γ.  The GEV distribution groups the Gumbel, Fréchet, and Weibull distributions into a single composite form.

Conditions of convergence

The Fisher–Tippett–Gnedenko theorem is a statement about the convergence of the limiting distribution  G(x) , above. The study of conditions for convergence of  G  to particular cases of the generalized extreme value distribution began with Mises (1936)[3][5][4] and was further developed by Gnedenko (1943).[5]

Let  F  be the distribution function of  X , and  X1,,Xn  be some i.i.d. sample thereof.
Also let  xmax  be the population maximum:  xmaxsup { x  F(x)<1 }. 

The limiting distribution of the normalized sample maximum, given by G above, will then be:[7]


Fréchet distribution  ( γ>0 )
For strictly positive  γ>0 , the limiting distribution converges if and only if
 xmax= 
and
 limt 1F(u t) 1F(t)=u(1γ)  for all  u>0.
In this case, possible sequences that will satisfy the theorem conditions are
bn=0
and
 an=F1(11 n ).
Strictly positive  γ  corresponds to what is called a heavy tailed distribution.


Gumbel distribution  ( γ=0 )
For trivial  γ=0 , and with  xmax  either finite or infinite, the limiting distribution converges if and only if
 limtxmax 1F( t+u g~(t) ) 1F(t)=eu  for all  u>0 
with
 g~(t) txmax( 1F(s) ) d s 1F(t).
Possible sequences here are
 bn=F1( 11 n  ) 
and
 an=g~(F1( 11 n  )).


Weibull distribution  ( γ<0 )
For strictly negative  γ<0  the limiting distribution converges if and only if
 xmax < (is finite)
and
 limt0+ 1F( xmaxu t ) 1F( xmaxt )=u(1 γ )  for all  u>0.
Note that for this case the exponential term  1 γ   is strictly positive, since  γ  is strictly negative.
Possible sequences here are
 bn=xmax 
and
 an=xmaxF1( 11 n  ).


Note that the second formula (the Gumbel distribution) is the limit of the first (the Fréchet distribution) as  γ  goes to zero.

Examples

Fréchet distribution

The Cauchy distribution's density function is:

f(x)=1 π2+x2  ,

and its cumulative distribution function is:

F(x)= 1 2+1 π arctan(x π ).

A little bit of calculus show that the right tail's cumulative distribution  1F(x)  is asymptotic to  1 x  , or

lnF(x)1 x asx ,

so we have

ln( F(x)n )=n lnF(x)n x .

Thus we have

F(x)nexp(n x )

and letting  ux n 1  (and skipping some explanation)

limn( F(n u+n)n )=exp(1 1+u )=G1(u) 

for any  u. The expected maximum value therefore goes up linearly with n .

Gumbel distribution

Let us take the normal distribution with cumulative distribution function

F(x)=12erfc(x 2  ).

We have

lnF(x) exp(12x2) 2π  xasx

and thus

ln( F(x)n )=nlnF(x) nexp(12x2) 2π  xasx.

Hence we have

F(x)nexp(  n exp(12x2)  2π  x ).

If we define  cn  as the value that exactly satisfies

 nexp( 12cn2)  2π  cn =1 ,

then around  x=cn 

 n exp( 12x2) 2π  xexp( cn (cnx) ).

As  n  increases, this becomes a good approximation for a wider and wider range of  cn (cnx)  so letting  ucn (cnx)  we find that

limn( F(ucn +cn)n )=exp(exp(u))=G0(u).

Equivalently,

limn𝒫 ( max{X1, , Xn}cn (ucn )u)=exp(exp(u))=G0(u).

With this result, we see retrospectively that we need  lncn lnlnn 2  and then

cn2lnn  ,

so the maximum is expected to climb toward infinity ever more slowly.

Weibull distribution

We may take the simplest example, a uniform distribution between 0 and 1, with cumulative distribution function

F(x)=x  for any x value from 0 to 1 .

For values of  x  1  we have

ln( F(x)n )=n lnF(x)  n ( 1x ).

So for  x1  we have

 F(x)nexp( n xn ).

Let  u1+n ( 1x )  and get

limn( F( u n+1 1 n) )n=exp( (1u) )=G1(u).

Close examination of that limit shows that the expected maximum approaches 1 in inverse proportion to n .

See also


References

  1. Fréchet, M. (1927). "Sur la loi de probabilité de l'écart maximum". Annales de la Société Polonaise de Mathématique 6 (1): 93–116. 
  2. Fisher, R.A.; Tippett, L.H.C. (1928). "Limiting forms of the frequency distribution of the largest and smallest member of a sample". Proc. Camb. Phil. Soc. 24 (2): 180–190. doi:10.1017/s0305004100015681. Bibcode1928PCPS...24..180F. 
  3. 3.0 3.1 von Mises, R. (1936). "La distribution de la plus grande de n valeurs". Rev. Math. Union Interbalcanique. 1: 141–160. 
  4. 4.0 4.1 Falk, Michael; Marohn, Frank (1993). "von Mises conditions revisited". The Annals of Probability: 1310–1328. 
  5. 5.0 5.1 5.2 Gnedenko, B.V. (1943). "Sur la distribution limite du terme maximum d'une serie aleatoire". Annals of Mathematics 44 (3): 423–453. doi:10.2307/1968974. 
  6. Mood, A.M. (1950). "5. Order Statistics". Introduction to the theory of statistics. New York, NY: McGraw-Hill. pp. 251–270. 
  7. 7.0 7.1 Haan, Laurens; Ferreira, Ana (2007). Extreme Value Theory: An introduction. Springer. 

Further reading