Ferrers function

From HandWiki

In mathematics, Ferrers functions are certain special functions defined in terms of hypergeometric functions.[1] They are named after Norman Macleod Ferrers[citation needed].

Definitions

When the order μ and the degree ν are real and x ∈ (-1,1)

Ferrers function of the first kind
Pvμ(x)=(1+x1x)μ/2F(v+1,v;1μ;1/2x/2)Γ(1μ)
Ferrers function of the second kind
Qvμ(x)=π2sin(μπ)(cos(μπ)(1+x1x)μ2F(v+1,v;1μ;1x2)Γ(1μ)Γ(ν+μ+1)Γ(νμ+1)(1x1+x)μ2F(v+1,v;1+μ;1x2)Γ(1+μ))

See also

References

  1. Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., eds. (2010), "Ferrers Function", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, http://dlmf.nist.gov/14.3.i