Exponential dispersion model

From HandWiki
Short description: Set of probability distributions

In probability and statistics, the class of exponential dispersion models (EDM), also called exponential dispersion family (EDF), is a set of probability distributions that represents a generalisation of the natural exponential family.[1][2][3] Exponential dispersion models play an important role in statistical theory, in particular in generalized linear models because they have a special structure which enables deductions to be made about appropriate statistical inference.

Definition

Univariate case

There are two versions to formulate an exponential dispersion model.

Additive exponential dispersion model

In the univariate case, a real-valued random variable X belongs to the additive exponential dispersion model with canonical parameter θ and index parameter λ, XED*(θ,λ), if its probability density function can be written as

fX(xθ,λ)=h*(λ,x)exp(θxλA(θ)).

Reproductive exponential dispersion model

The distribution of the transformed random variable Y=Xλ is called reproductive exponential dispersion model, YED(μ,σ2), and is given by

fY(yμ,σ2)=h(σ2,y)exp(θyA(θ)σ2),

with σ2=1λ and μ=A(θ), implying θ=(A)1(μ). The terminology dispersion model stems from interpreting σ2 as dispersion parameter. For fixed parameter σ2, the ED(μ,σ2) is a natural exponential family.

Multivariate case

In the multivariate case, the n-dimensional random variable 𝐗 has a probability density function of the following form[1]

f𝐗(𝐱|θ,λ)=h(λ,𝐱)exp(λ(θ𝐱A(θ))),

where the parameter θ has the same dimension as 𝐗.

Properties

Cumulant-generating function

The cumulant-generating function of YED(μ,σ2) is given by

K(t;μ,σ2)=logE[etY]=A(θ+σ2t)A(θ)σ2,

with θ=(A)1(μ)

Mean and variance

Mean and variance of YED(μ,σ2) are given by

E[Y]=μ=A(θ),Var[Y]=σ2A(θ)=σ2V(μ),

with unit variance function V(μ)=A((A)1(μ)).

Reproductive

If Y1,,Yn are i.i.d. with YiED(μ,σ2wi), i.e. same mean μ and different weights wi, the weighted mean is again an ED with

i=1nwiYiwED(μ,σ2w),

with w=i=1nwi. Therefore Yi are called reproductive.

Unit deviance

The probability density function of an ED(μ,σ2) can also be expressed in terms of the unit deviance d(y,μ) as

fY(yμ,σ2)=h~(σ2,y)exp(d(y,μ)2σ2),

where the unit deviance takes the special form d(y,μ)=yf(μ)+g(μ)+h(y) or in terms of the unit variance function as d(y,μ)=2μyytV(t)dt.

Examples

Many very common probability distributions belong to the class of EDMs, among them are: normal distribution, binomial distribution, Poisson distribution, negative binomial distribution, gamma distribution, inverse Gaussian distribution, and Tweedie distribution.

References

  1. 1.0 1.1 Jørgensen, B. (1987). Exponential dispersion models (with discussion). Journal of the Royal Statistical Society, Series B, 49 (2), 127–162.
  2. Jørgensen, B. (1992). The theory of exponential dispersion models and analysis of deviance. Monografias de matemática, no. 51.
  3. Marriott, P. (2005) "Local Mixtures and Exponential Dispersion Models" pdf