Dual snub 24-cell
| Dual snub 24-cell | ||
Orthogonal projection | ||
| Type | 4-polytope | |
| Cells | 96 | |
| Faces | 432 | 144 kites 288 Isosceles triangle |
| Edges | 480 | |
| Vertices | 144 | |
| Dual | Snub 24-cell | |
| Properties | convex | |
In geometry, the dual snub 24-cell is a 144 vertex convex 4-polytope composed of 96 irregular cells. Each cell has faces of two kinds: 3 kites and 6 isosceles triangles.[1] The polytope has a total of 432 faces (144 kites and 288 isosceles triangles) and 480 edges.
Geometry
The dual snub 24-cell, first described by Koca et al. in 2011,[2] is the dual polytope of the snub 24-cell, a semiregular polytope first described by Thorold Gosset in 1900.[3]
Construction
The vertices of a dual snub 24-cell are obtained using quaternion simple roots (T') in the generation of the 600 vertices of the 120-cell.[4] The following describe and 24-cells as quaternion orbit weights of D4 under the Weyl group W(D4):
O(0100) : T = {±1,±e1,±e2,±e3,(±1±e1±e2±e3)/2}
O(1000) : V1
O(0010) : V2
O(0001) : V3
With quaternions where is the conjugate of and and , then the Coxeter group is the symmetry group of the 600-cell and the 120-cell of order 14400.
Given such that and as an exchange of within where is the golden ratio, we can construct:
- the snub 24-cell
- the 600-cell
- the 120-cell
- the alternate snub 24-cell
and finally the dual snub 24-cell can then be defined as the orbits of .
Projections
The (42) yellow have no overlaps. The (51) orange have 2 overlaps. The (18) sets of tetrahedral surfaces are uniquely colored. |
Dual
The dual polytope of this polytope is the Snub 24-cell.[5]
See also
Citations
- ↑ Koca, Al-Ajmi & Ozdes Koca 2011, pp. 986-987, Fig. 4.
- ↑ Koca, Al-Ajmi & Ozdes Koca 2011.
- ↑ Gosset 1900.
- ↑ Koca, Al-Ajmi & Ozdes Koca 2011, pp. 986-988, 6. Dual of the snub 24-cell.
- ↑ Coxeter 1973, pp. 151-153, §8.4. The snub {3,4,3}.
References
- Gosset, Thorold (1900). "On the Regular and Semi-Regular Figures in Space of n Dimensions". Messenger of Mathematics (Macmillan).
- Coxeter, H.S.M. (1973). Regular Polytopes (3rd ed.). New York: Dover.
- Conway, John; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). The Symmetries of Things. ISBN 978-1-56881-220-5.
- Koca, Mehmet; Ozdes Koca, Nazife; Al-Barwani, Muataz (2012). "Snub 24-Cell Derived from the Coxeter-Weyl Group W(D4)". Int. J. Geom. Methods Mod. Phys. 09 (8). doi:10.1142/S0219887812500685. http://arxiv-web3.library.cornell.edu/abs/1106.3433.
- Koca, Mehmet; Al-Ajmi, Mudhahir; Ozdes Koca, Nazife (2011). "Quaternionic representation of snub 24-cell and its dual polytope derived from E8 root system". Linear Algebra and Its Applications 434 (4): 977–989. doi:10.1016/j.laa.2010.10.005. ISSN 0024-3795.
Fundamental convex regular and uniform polytopes in dimensions 2–10
| ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
| Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
| Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
| Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
| Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
| Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
| Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
| Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
| Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
| Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
| Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
| Topics: Polytope families • Regular polytope • List of regular polytopes and compounds | ||||||||||||





