Dickman function

From HandWiki
The Dickman–de Bruijn function ρ(u) plotted on a logarithmic scale. The horizontal axis is the argument u, and the vertical axis is the value of the function. The graph nearly makes a downward line on the logarithmic scale, demonstrating that the logarithm of the function is quasilinear.

In analytic number theory, the Dickman function or Dickman–de Bruijn function ρ is a special function used to estimate the proportion of smooth numbers up to a given bound. It was first studied by actuary Karl Dickman, who defined it in his only mathematical publication,[1] which is not easily available,[2] and later studied by the Dutch mathematician Nicolaas Govert de Bruijn.[3][4]

Definition

The Dickman–de Bruijn function ρ(u) is a continuous function that satisfies the delay differential equation

uρ(u)+ρ(u1)=0

with initial conditions ρ(u)=1 for 0 ≤ u ≤ 1.

Properties

Dickman proved that, when a is fixed, we have

Ψ(x,x1/a)xρ(a)

where Ψ(x,y) is the number of y-smooth (or y-friable) integers below x.

Ramaswami later gave a rigorous proof that for fixed a, Ψ(x,x1/a) was asymptotic to xρ(a), with the error bound

Ψ(x,x1/a)=xρ(a)+O(x/logx)

in big O notation.[5]

Applications

The Dickman–de Bruijn used to calculate the probability that the largest and 2nd largest factor of x is less than x^a

The main purpose of the Dickman–de Bruijn function is to estimate the frequency of smooth numbers at a given size. This can be used to optimize various number-theoretical algorithms such as P-1 factoring and can be useful of its own right.

It can be shown using logρ that[6]

Ψ(x,y)=xuO(u)

which is related to the estimate ρ(u)uu below.

The Golomb–Dickman constant has an alternate definition in terms of the Dickman–de Bruijn function.

Estimation

A first approximation might be ρ(u)uu. A better estimate is[7]

ρ(u)1ξ2πuexp(uξ+Ei(ξ))

where Ei is the exponential integral and ξ is the positive root of

eξ1=uξ.

A simple upper bound is ρ(x)1/x!.

u ρ(u)
1 1
2 3.0685282×101
3 4.8608388×102
4 4.9109256×103
5 3.5472470×104
6 1.9649696×105
7 8.7456700×107
8 3.2320693×108
9 1.0162483×109
10 2.7701718×1011

Computation

For each interval [n − 1, n] with n an integer, there is an analytic function ρn such that ρn(u)=ρ(u). For 0 ≤ u ≤ 1, ρ(u)=1. For 1 ≤ u ≤ 2, ρ(u)=1logu. For 2 ≤ u ≤ 3,

ρ(u)=1(1log(u1))log(u)+Li2(1u)+π212.

with Li2 the dilogarithm. Other ρn can be calculated using infinite series.[8]

An alternate method is computing lower and upper bounds with the trapezoidal rule;[7] a mesh of progressively finer sizes allows for arbitrary accuracy. For high precision calculations (hundreds of digits), a recursive series expansion about the midpoints of the intervals is superior.[9]

Extension

Friedlander defines a two-dimensional analog σ(u,v) of ρ(u).[10] This function is used to estimate a function Ψ(x,y,z) similar to de Bruijn's, but counting the number of y-smooth integers with at most one prime factor greater than z. Then

Ψ(x,x1/a,x1/b)xσ(b,a).

See also

References

  1. Dickman, K. (1930). "On the frequency of numbers containing prime factors of a certain relative magnitude". Arkiv för Matematik, Astronomi och Fysik 22A (10): 1–14. Bibcode1930ArMAF..22A..10D. 
  2. Various (2012–2018). "nt.number theory - Reference request: Dickman, On the frequency of numbers containing prime factors". https://mathoverflow.net/questions/89362/reference-request-dickman-on-the-frequency-of-numbers-containing-prime-factors.  Discussion: an unsuccessful search for a source of Dickman's paper, and suggestions on several others on the topic.
  3. de Bruijn, N. G. (1951). "On the number of positive integers ≤ x and free of prime factors > y". Indagationes Mathematicae 13: 50–60. http://alexandria.tue.nl/repository/freearticles/597499.pdf. 
  4. de Bruijn, N. G. (1966). "On the number of positive integers ≤ x and free of prime factors > y, II". Indagationes Mathematicae 28: 239–247. http://alexandria.tue.nl/repository/freearticles/597534.pdf. 
  5. Ramaswami, V. (1949). "On the number of positive integers less than x and free of prime divisors greater than xc". Bulletin of the American Mathematical Society 55 (12): 1122–1127. doi:10.1090/s0002-9904-1949-09337-0. https://www.ams.org/bull/1949-55-12/S0002-9904-1949-09337-0/S0002-9904-1949-09337-0.pdf. 
  6. Hildebrand, A.; Tenenbaum, G. (1993). "Integers without large prime factors". Journal de théorie des nombres de Bordeaux 5 (2): 411–484. doi:10.5802/jtnb.101. http://archive.numdam.org/article/JTNB_1993__5_2_411_0.pdf. 
  7. 7.0 7.1 van de Lune, J.; Wattel, E. (1969). "On the Numerical Solution of a Differential-Difference Equation Arising in Analytic Number Theory". Mathematics of Computation 23 (106): 417–421. doi:10.1090/S0025-5718-1969-0247789-3. 
  8. Bach, Eric; Peralta, René (1996). "Asymptotic Semismoothness Probabilities". Mathematics of Computation 65 (216): 1701–1715. doi:10.1090/S0025-5718-96-00775-2. Bibcode1996MaCom..65.1701B. http://cr.yp.to/bib/1996/bach-semismooth.pdf. 
  9. Marsaglia, George; Zaman, Arif; Marsaglia, John C. W. (1989). "Numerical Solution of Some Classical Differential-Difference Equations". Mathematics of Computation 53 (187): 191–201. doi:10.1090/S0025-5718-1989-0969490-3. 
  10. Friedlander, John B. (1976). "Integers free from large and small primes". Proc. London Math. Soc. 33 (3): 565–576. doi:10.1112/plms/s3-33.3.565. 

Further reading

  • Broadhurst, David (2010). "Dickman polylogarithms and their constants". arXiv:1004.0519 [math-ph].
  • Soundararajan, Kannan (2012). "An asymptotic expansion related to the Dickman function". Ramanujan Journal 29 (1–3): 25–30. doi:10.1007/s11139-011-9304-3. 
  • Weisstein, Eric W.. "Dickman function". http://mathworld.wolfram.com/DickmanFunction.html.