Delaporte distribution

From HandWiki
Delaporte
Probability mass function
Plot of the PMF for various Delaporte distributions.
When α and β are 0, the distribution is the Poisson.
When λ is 0, the distribution is the negative binomial.
Cumulative distribution function
Plot of the PMF for various Delaporte distributions.
When α and β are 0, the distribution is the Poisson.
When λ is 0, the distribution is the negative binomial.
Parameters

λ>0 (fixed mean)

α,β>0 (parameters of variable mean)
Support k{0,1,2,}
pmf i=0kΓ(α+i)βiλkieλΓ(α)i!(1+β)α+i(ki)!
CDF j=0ki=0jΓ(α+i)βiλjieλΓ(α)i!(1+β)α+i(ji)!
Mean λ+αβ
Mode {z,z+1{z}:z=(α1)β+λzotherwise
Variance λ+αβ(1+β)
Skewness See #Properties
Kurtosis See #Properties
MGF eλ(et1)(1β(et1))α

The Delaporte distribution is a discrete probability distribution that has received attention in actuarial science.[1][2] It can be defined using the convolution of a negative binomial distribution with a Poisson distribution.[2] Just as the negative binomial distribution can be viewed as a Poisson distribution where the mean parameter is itself a random variable with a gamma distribution, the Delaporte distribution can be viewed as a compound distribution based on a Poisson distribution, where there are two components to the mean parameter: a fixed component, which has the λ parameter, and a gamma-distributed variable component, which has the α and β parameters.[3] The distribution is named for Pierre Delaporte, who analyzed it in relation to automobile accident claim counts in 1959,[4] although it appeared in a different form as early as 1934 in a paper by Rolf von Lüders,[5] where it was called the Formel II distribution.[2]

Properties

The skewness of the Delaporte distribution is:

λ+αβ(1+3β+2β2)(λ+αβ(1+β))32

The excess kurtosis of the distribution is:

λ+3λ2+αβ(1+6λ+6λβ+7β+12β2+6β3+3αβ+6αβ2+3αβ3)(λ+αβ(1+β))2

References

  1. Panjer, Harry H. (2006). "Discrete Parametric Distributions". in Teugels, Jozef L.; Sundt, Bjørn. Encyclopedia of Actuarial Science. John Wiley & Sons. doi:10.1002/9780470012505.tad027. ISBN 978-0-470-01250-5. 
  2. 2.0 2.1 2.2 Johnson, Norman Lloyd; Kemp, Adrienne W.; Kotz, Samuel (2005). Univariate discrete distributions (Third ed.). John Wiley & Sons. pp. 241–242. ISBN 978-0-471-27246-5. 
  3. Vose, David (2008). Risk analysis: a quantitative guide (Third, illustrated ed.). John Wiley & Sons. pp. 618–619. ISBN 978-0-470-51284-5. 
  4. Delaporte, Pierre J. (1960). "Quelques problèmes de statistiques mathématiques poses par l'Assurance Automobile et le Bonus pour non sinistre" (in French). Bulletin Trimestriel de l'Institut des Actuaires Français 227: 87–102. 
  5. von Lüders, Rolf (1934). "Die Statistik der seltenen Ereignisse" (in German). Biometrika 26 (1–2): 108–128. doi:10.1093/biomet/26.1-2.108. 

Further reading

  • Murat, M.; Szynal, D. (1998). "On moments of counting distributions satisfying the k'th-order recursion and their compound distributions". Journal of Mathematical Sciences 92 (4): 4038–4043. doi:10.1007/BF02432340.