Chazy equation

From HandWiki

In mathematics, the Chazy equation is the differential equation

d3ydx3=2yd2ydx23(dydx)2.

It was introduced by Jean Chazy (1909, 1911) as an example of a third-order differential equation with a movable singularity that is a natural boundary for its solutions.

One solution is given by the Eisenstein series

E2(τ)=124σ1(n)qn=124q72q2.

Acting on this solution by the group SL2 gives a 3-parameter family of solutions.

References

  • Chazy, J. (1909), "Sur les équations différentielles dont l'intégrale générale est uniforme et admet des singularités essentielles mobiles", C. R. Acad. Sci. Paris (149) 
  • Chazy, J. (1911), "Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes", Acta Mathematica 34: 317–385, doi:10.1007/BF02393131 
  • "Symmetry and the Chazy equation", Journal of Differential Equations 124 (1): 225–246, 1996, doi:10.1006/jdeq.1996.0008, Bibcode1996JDE...124..225C