Cauchy–Hadamard theorem

From HandWiki
Short description: A theorem that determines the radius of convergence of a power series.

In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the France mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy,[1] but remained relatively unknown until Hadamard rediscovered it.[2] Hadamard's first publication of this result was in 1888;[3] he also included it as part of his 1892 Ph.D. thesis.[4]

Theorem for one complex variable

Consider the formal power series in one complex variable z of the form f(z)=n=0cn(za)n where a,cn.

Then the radius of convergence R of f at the point a is given by 1R=lim supn(|cn|1/n) where lim sup denotes the limit superior, the limit as n approaches infinity of the supremum of the sequence values after the nth position. If the sequence values are unbounded so that the lim sup is ∞, then the power series does not converge near a, while if the lim sup is 0 then the radius of convergence is ∞, meaning that the series converges on the entire plane.

Proof

Without loss of generality assume that a=0. We will show first that the power series ncnzn converges for |z|<R, and then that it diverges for |z|>R.

First suppose |z|<R. Let t=1/R not be 0 or ±. For any ε>0, there exists only a finite number of n such that |cn|nt+ε. Now |cn|(t+ε)n for all but a finite number of cn, so the series ncnzn converges if |z|<1/(t+ε). This proves the first part.

Conversely, for ε>0, |cn|(tε)n for infinitely many cn, so if |z|=1/(tε)>R, we see that the series cannot converge because its nth term does not tend to 0.[5]

Theorem for several complex variables

Let α be a multi-index (a n-tuple of integers) with |α|=α1++αn, then f(x) converges with radius of convergence ρ (which is also a multi-index) if and only if lim sup|α||cα|ρα|α|=1 to the multidimensional power series α0cα(za)α:=α10,,αn0cα1,,αn(z1a1)α1(znan)αn

Proof

From [6]

Set z=a+tρ (zi=ai+tρi), then

α0cα(za)α=α0cαραt|α|=μ0(|α|=μ|cα|ρα)tμ

This is a power series in one variable t which converges for |t|<1 and diverges for |t|>1. Therefore, by the Cauchy-Hadamard theorem for one variable

lim supμ|α|=μ|cα|ραμ=1

Setting |cm|ρm=max|α|=μ|cα|ρα gives us an estimate

|cm|ρm|α|=μ|cα|ρα(μ+1)n|cm|ρm

Because (μ+1)nμ1 as μ

|cm|ρmμ|α|=μ|cα|ραμ|cm|ρmμ|α|=μ|cα|ραμ=|cm|ρmμ(μ)

Therefore

lim sup|α||cα|ρα|α|=lim supμ|cm|ρmμ=1

Notes

  1. Cauchy, A. L. (1821), Analyse algébrique .
  2. Bottazzini, Umberto (1986), The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, pp. 116–117, ISBN 978-0-387-96302-0, https://archive.org/details/highercalculushi0000bott/page/116 . Translated from the Italian by Warren Van Egmond.
  3. Hadamard, J., "Sur le rayon de convergence des séries ordonnées suivant les puissances d'une variable", C. R. Acad. Sci. Paris 106: 259–262 .
  4. Hadamard, J. (1892), "Essai sur l'étude des fonctions données par leur développement de Taylor", Journal de Mathématiques Pures et Appliquées, 4e Série VIII, https://archive.org/details/essaisurltuded00hadauoft . Also in Thèses présentées à la faculté des sciences de Paris pour obtenir le grade de docteur ès sciences mathématiques, Paris: Gauthier-Villars et fils, 1892.
  5. Lang, Serge (2002), Complex Analysis: Fourth Edition, Springer, pp. 55–56, ISBN 0-387-98592-1  Graduate Texts in Mathematics
  6. Shabat, B.V. (1992), Introduction to complex analysis Part II. Functions of several variables, American Mathematical Society, pp. 32-33, ISBN 978-0821819753