Arcsine distribution

From HandWiki
Short description: Type of probability distribution
Arcsine
Probability density function
Probability density function for the arcsine distribution
Cumulative distribution function
Cumulative distribution function for the arcsine distribution
Parameters none
Support x[0,1]
PDF f(x)=1πx(1x)
CDF F(x)=2πarcsin(x)
Mean 12
Median 12
Mode x{0,1}
Variance 18
Skewness 0
Kurtosis 32
Entropy lnπ4
MGF 1+k=1(r=0k12r+12r+2)tkk!
CF 1F1(12;1;it) 

In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root:

F(x)=2πarcsin(x)=arcsin(2x1)π+12

for 0 ≤ x ≤ 1, and whose probability density function is

f(x)=1πx(1x)

on (0, 1). The standard arcsine distribution is a special case of the beta distribution with α = β = 1/2. That is, if X is an arcsine-distributed random variable, then XBeta(12,12). By extension, the arcsine distribution is a special case of the Pearson type I distribution.

The arcsine distribution appears in the Lévy arcsine law, in the Erdős arcsine law, and as the Jeffreys prior for the probability of success of a Bernoulli trial.[1][2]

Generalization

Arcsine – bounded support
Parameters <a<b<
Support x[a,b]
PDF f(x)=1π(xa)(bx)
CDF F(x)=2πarcsin(xaba)
Mean a+b2
Median a+b2
Mode xa,b
Variance 18(ba)2
Skewness 0
Kurtosis 32

Arbitrary bounded support

The distribution can be expanded to include any bounded support from a ≤ x ≤ b by a simple transformation

F(x)=2πarcsin(xaba)

for a ≤ x ≤ b, and whose probability density function is

f(x)=1π(xa)(bx)

on (ab).

Shape factor

The generalized standard arcsine distribution on (0,1) with probability density function

f(x;α)=sinπαπxα(1x)α1

is also a special case of the beta distribution with parameters Beta(1α,α).

Note that when α=12 the general arcsine distribution reduces to the standard distribution listed above.

Properties

  • Arcsine distribution is closed under translation and scaling by a positive factor
    • If XArcsine(a,b) then kX+cArcsine(ak+c,bk+c)
  • The square of an arcsine distribution over (-1, 1) has arcsine distribution over (0, 1)
    • If XArcsine(1,1) then X2Arcsine(0,1)
  • The coordinates of points uniformly selected on a circle of radius r centered at the origin (0, 0), have an Arcsine(r,r) distribution
    • For example, if we select a point uniformly on the circumference, UUniform(0,2πr), we have that the point's x coordinate distribution is rcos(U)Arcsine(r,r), and its y coordinate distribution is rsin(U)Arcsine(r,r)

Characteristic function

The characteristic function of the arcsine distribution is a confluent hypergeometric function and given as 1F1(12;1;it) .

  • If U and V are i.i.d uniform (−π,π) random variables, then sin(U), sin(2U), cos(2U), sin(U+V) and sin(UV) all have an Arcsine(1,1) distribution.
  • If X is the generalized arcsine distribution with shape parameter α supported on the finite interval [a,b] then XabaBeta(1α,α) 
  • If X ~ Cauchy(0, 1) then 11+X2 has a standard arcsine distribution

References

  1. Overturf, Drew; Buchanan, Kristopher; Jensen, Jeffrey; Wheeland, Sara; Huff, Gregory (2017). "Investigation of beamforming patterns from volumetrically distributed phased arrays". MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). pp. 817–822. doi:10.1109/MILCOM.2017.8170756. ISBN 978-1-5386-0595-0. 
  2. Buchanan, K. et al. (2020). "Null Beamsteering Using Distributed Arrays and Shared Aperture Distributions". IEEE Transactions on Antennas and Propagation 68 (7): 5353-5364. doi:10.1109/TAP.2020.2978887. 

Further reading