Arakawa–Kaneko zeta function

From HandWiki

In mathematics, the Arakawa–Kaneko zeta function is a generalisation of the Riemann zeta function which generates special values of the polylogarithm function.

Definition

The zeta function ξk(s) is defined by

ξk(s)=1Γ(s)0+ts1et1Lik(1et)dt 

where Lik is the k-th polylogarithm

Lik(z)=n=1znnk .

Properties

The integral converges for (s)>0 and ξk(s) has analytic continuation to the whole complex plane as an entire function.

The special case k = 1 gives ξ1(s)=sζ(s+1) where ζ is the Riemann zeta-function.

The special case s = 1 remarkably also gives ξk(1)=ζ(k+1) where ζ is the Riemann zeta-function.

The values at integers are related to multiple zeta function values by

ξk(m)=ζm*(k,1,,1)

where

ζn*(k1,,kn1,kn)=0<m1<m2<<mn1m1k1mn1kn1mnkn .

References