Arakawa–Kaneko zeta function
From HandWiki
In mathematics, the Arakawa–Kaneko zeta function is a generalisation of the Riemann zeta function which generates special values of the polylogarithm function.
Definition
The zeta function is defined by
where Lik is the k-th polylogarithm
Properties
The integral converges for and has analytic continuation to the whole complex plane as an entire function.
The special case k = 1 gives where is the Riemann zeta-function.
The special case s = 1 remarkably also gives where is the Riemann zeta-function.
The values at integers are related to multiple zeta function values by
where
References
- Kaneko, Masanobou (1997). "Poly-Bernoulli numbers". J. Théor. Nombres Bordx. 9: 221–228.
- Arakawa, Tsuneo; Kaneko, Masanobu (1999). "Multiple zeta values, poly-Bernoulli numbers, and related zeta functions". Nagoya Math. J. 153: 189–209. http://projecteuclid.org/euclid.nmj/1114630825.
- Coppo, Marc-Antoine; Candelpergher, Bernard (2010). "The Arakawa–Kaneko zeta function". Ramanujan J. 22: 153–162.
![]() | Original source: https://en.wikipedia.org/wiki/Arakawa–Kaneko zeta function.
Read more |