Anyonic Lie algebra

From HandWiki
Short description: Graded vector space equipped with a bilinear operator

In mathematics, an anyonic Lie algebra is a U(1) graded vector space L over equipped with a bilinear operator [,]:L×LL and linear maps ε:L (some authors use ||:L) and Δ:LLL such that ΔX=XiXi, satisfying following axioms:[1]

  • ε([X,Y])=ε(X)ε(Y)
  • [X,Y]i[X,Y]i=[Xi,Yj][Xi,Yj]e2πinε(Xi)ε(Yj)
  • Xi[Xi,Y]=Xi[Xi,Y]e2πinε(Xi)(2ε(Y)+ε(Xi))
  • [X,[Y,Z]]=Xi,Y],[Xi,Ze2πinε(Y)ε(Xi)

for pure graded elements X, Y, and Z.

References

  1. Majid, S. (21 Aug 1997). "Anyonic Lie Algebras". Czechoslov. J. Phys. 47 (12): 1241–1250. doi:10.1023/A:1022877616496. Bibcode1997CzJPh..47.1241M.