Anger function

From HandWiki
Plot of the Anger function J v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the Anger function J v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In mathematics, the Anger function, introduced by C. T. Anger (1855), is a function defined as

𝐉ν(z)=1π0πcos(νθzsinθ)dθ

with complex parameter ν and complex variable z.[1] It is closely related to the Bessel functions.

The Weber function (also known as Lommel–Weber function), introduced by H. F. Weber (1879), is a closely related function defined by

𝐄ν(z)=1π0πsin(νθzsinθ)dθ

and is closely related to Bessel functions of the second kind.

Relation between Weber and Anger functions

The Anger and Weber functions are related by

Plot of the Weber function E v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the Weber function E v(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
sin(πν)𝐉ν(z)=cos(πν)𝐄ν(z)𝐄ν(z),sin(πν)𝐄ν(z)=cos(πν)𝐉ν(z)𝐉ν(z),

so in particular if ν is not an integer they can be expressed as linear combinations of each other. If ν is an integer then Anger functions Jν are the same as Bessel functions Jν, and Weber functions can be expressed as finite linear combinations of Struve functions.

Power series expansion

The Anger function has the power series expansion[2]

𝐉ν(z)=cosπν2k=0(1)kz2k4kΓ(k+ν2+1)Γ(kν2+1)+sinπν2k=0(1)kz2k+122k+1Γ(k+ν2+32)Γ(kν2+32).

While the Weber function has the power series expansion[2]

𝐄ν(z)=sinπν2k=0(1)kz2k4kΓ(k+ν2+1)Γ(kν2+1)cosπν2k=0(1)kz2k+122k+1Γ(k+ν2+32)Γ(kν2+32).

Differential equations

The Anger and Weber functions are solutions of inhomogeneous forms of Bessel's equation

z2y+zy+(z2ν2)y=0.

More precisely, the Anger functions satisfy the equation[2]

z2y+zy+(z2ν2)y=(zν)sin(πν)π,

and the Weber functions satisfy the equation[2]

z2y+zy+(z2ν2)y=z+ν+(zν)cos(πν)π.

Recurrence relations

The Anger function satisfies this inhomogeneous form of recurrence relation[2]

z𝐉ν1(z)+z𝐉ν+1(z)=2ν𝐉ν(z)2sinπνπ.

While the Weber function satisfies this inhomogeneous form of recurrence relation[2]

z𝐄ν1(z)+z𝐄ν+1(z)=2ν𝐄ν(z)2(1cosπν)π.

Delay differential equations

The Anger and Weber functions satisfy these homogeneous forms of delay differential equations[2]

𝐉ν1(z)𝐉ν+1(z)=2z𝐉ν(z),
𝐄ν1(z)𝐄ν+1(z)=2z𝐄ν(z).

The Anger and Weber functions also satisfy these inhomogeneous forms of delay differential equations[2]

zz𝐉ν(z)±ν𝐉ν(z)=±z𝐉ν1(z)±sinπνπ,
zz𝐄ν(z)±ν𝐄ν(z)=±z𝐄ν1(z)±1cosπνπ.

References

  1. Hazewinkel, Michiel, ed. (2001), "Anger function", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=A/a012490 
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, http://dlmf.nist.gov/11.10