Andreotti–Grauert theorem

From HandWiki
Short description: Theorem

In mathematics, the Andreotti–Grauert theorem, introduced by Andreotti and Grauert (1962), gives conditions for cohomology groups of coherent sheaves over complex manifolds to vanish or to be finite-dimensional.

statement

Let X be a (not necessarily reduced) complex analytic space, and a coherent analytic sheaf over X. Then,

  • dimHi(X,)< for iq (resp. i<codh()q), if X is q-pseudoconvex (resp. q-pseudoconcave). (finiteness)[1][2]
  • Hi(X,)=0 for iq, if X is q-complete. (vanish)[3][2]

Citations

  1. (Andreotti Grauert)
  2. 2.0 2.1 (Ohsawa1984 {{{2}}})
  3. (Andreotti Grauert)

References

Hazewinkel, Michiel, ed. (2001), "Finiteness theorems", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=44303