Algebraic stack

From HandWiki
Short description: Generalization of algebraic spaces or schemes

In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves g,n and the moduli stack of elliptic curves. Originally, they were introduced by Alexander Grothendieck[1] to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. After Grothendieck developed the general theory of descent,[2] and Giraud the general theory of stacks,[3] the notion of algebraic stacks was defined by Michael Artin.[4]

Definition

Motivation

One of the motivating examples of an algebraic stack is to consider a groupoid scheme

(R,U,s,t,m)

over a fixed scheme

S

. For example, if

R=μn×S𝔸Sn

(where

μn

is the group scheme of roots of unity),

U=𝔸Sn

,

s=prU

is the projection map,

t

is the group action

ζn(x1,,xn)=(ζnx1,,ζnxn)

and

m

is the multiplication map

m:(μn×S𝔸Sn)×μn×S𝔸Sn(μn×S𝔸Sn)μn×S𝔸Sn

on

μn

. Then, given an

S

-scheme

π:XS

, the groupoid scheme

(R(X),U(X),s,t,m)

forms a groupoid (where

R,U

are their associated functors). Moreover, this construction is functorial on

(Sch/S)

forming a contravariant 2-functor

(R(),U(),s,t,m):(Sch/S)opCat

where

Cat

is the 2-category of small categories. Another way to view this is as a fibred category

[U/R](Sch/S)

through the Grothendieck construction. Getting the correct technical conditions, such as the Grothendieck topology on

(Sch/S)

, gives the definition of an algebraic stack. For instance, in the associated groupoid of

k

-points for a field

k

, over the origin object

0𝔸Sn(k)

there is the groupoid of automorphisms

μn(k)

. However, in order to get an algebraic stack from

[U/R]

, and not just a stack, there are additional technical hypotheses required for

[U/R]

.[5]

Algebraic stacks

It turns out using the fppf-topology[6] (faithfully flat and locally of finite presentation) on

(Sch/S)

, denoted

(Sch/S)fppf

, forms the basis for defining algebraic stacks. Then, an algebraic stack[7] is a fibered category

p:𝒳(Sch/S)fppf

such that

  1. 𝒳 is a category fibered in groupoids, meaning the overcategory for some π:XS is a groupoid
  2. The diagonal map Δ:𝒳𝒳×S𝒳 of fibered categories is representable as algebraic spaces
  3. There exists an fppf scheme US and an associated 1-morphism of fibered categories 𝒰𝒳 which is surjective and smooth called an atlas.

Explanation of technical conditions

Using the fppf topology

First of all, the fppf-topology is used because it behaves well with respect to descent. For example, if there are schemes

X,YOb(Sch/S)

and

XY

can be refined to an fppf-cover of

Y

, if

X

is flat, locally finite type, or locally of finite presentation, then

Y

has this property.[8] this kind of idea can be extended further by considering properties local either on the target or the source of a morphism

f:XY

. For a cover

{XiX}iI

we say a property

𝒫

is local on the source if

f:XY

has

𝒫

if and only if each

XiY

has

𝒫

.

There is an analogous notion on the target called local on the target. This means given a cover

{YiY}iI
f:XY

has

𝒫

if and only if each

X×YYiYi

has

𝒫

.

For the fppf topology, having an immersion is local on the target.[9] In addition to the previous properties local on the source for the fppf topology,

f

being universally open is also local on the source.[10] Also, being locally Noetherian and Jacobson are local on the source and target for the fppf topology.[11] This does not hold in the fpqc topology, making it not as "nice" in terms of technical properties. Even though this is true, using algebraic stacks over the fpqc topology still has its use, such as in chromatic homotopy theory. This is because the Moduli stack of formal group laws

fg

is an fpqc-algebraic stack[12]pg 40.

Representable diagonal

By definition, a 1-morphism

f:𝒳𝒴

of categories fibered in groupoids is representable by algebraic spaces[13] if for any fppf morphism

US

of schemes and any 1-morphism

y:(Sch/U)fppf𝒴

, the associated category fibered in groupoids

(Sch/U)fppf×𝒴𝒳

is representable as an algebraic space,[14][15] meaning there exists an algebraic space

F:(Sch/S)fppfopSets

such that the associated fibered category

𝒮F(Sch/S)fppf

[16] is equivalent to

(Sch/U)fppf×𝒴𝒳

. There are a number of equivalent conditions for representability of the diagonal[17] which help give intuition for this technical condition, but one of main motivations is the following: for a scheme

U

and objects

x,yOb(𝒳U)

the sheaf

Isom(x,y)

is representable as an algebraic space. In particular, the stabilizer group for any point on the stack

x:Spec(k)𝒳Spec(k)

is representable as an algebraic space. Another important equivalence of having a representable diagonal is the technical condition that the intersection of any two algebraic spaces in an algebraic stack is an algebraic space. Reformulated using fiber products

Y×𝒳ZYZ𝒳

the representability of the diagonal is equivalent to

Y𝒳

being representable for an algebraic space

Y

. This is because given morphisms

Y𝒳,Z𝒳

from algebraic spaces, they extend to maps

𝒳×𝒳

from the diagonal map. There is an analogous statement for algebraic spaces which gives representability of a sheaf on

(F/S)fppf

as an algebraic space.[18]

Note that an analogous condition of representability of the diagonal holds for some formulations of higher stacks[19] where the fiber product is an (n1)-stack for an n-stack 𝒳.

Surjective and smooth atlas

2-Yoneda lemma

The existence of an

fppf

scheme

US

and a 1-morphism of fibered categories

𝒰𝒳

which is surjective and smooth depends on defining a smooth and surjective morphisms of fibered categories. Here

𝒰

is the algebraic stack from the representable functor

hU

on

hU:(Sch/S)fppfopSets

upgraded to a category fibered in groupoids where the categories only have trivial morphisms. This means the set

hU(T)=Hom(Sch/S)fppf(T,U)

is considered as a category, denoted

h𝒰(T)

, with objects in

hU(T)

as

fppf

morphisms

f:TU

and morphisms are the identity morphism. Hence

h𝒰:(Sch/S)fppfopGroupoids

is a 2-functor of groupoids. Showing this 2-functor is a sheaf is the content of the 2-Yoneda lemma. Using the Grothendieck construction, there is an associated category fibered in groupoids denoted

𝒰𝒳

.

Representable morphisms of categories fibered in groupoids

To say this morphism

𝒰𝒳

is smooth or surjective, we have to introduce representable morphisms.[20] A morphism

p:𝒳𝒴

of categories fibered in groupoids over

(Sch/S)fppf

is said to be representable if given an object

TS

in

(Sch/S)fppf

and an object

tOb(𝒴T)

the 2-fibered product

(Sch/T)fppf×t,𝒴𝒳T

is representable by a scheme. Then, we can say the morphism of categories fibered in groupoids

p

is smooth and surjective if the associated morphism

(Sch/T)fppf×t,𝒴𝒳T(Sch/T)fppf

of schemes is smooth and surjective.

Deligne-Mumford stacks

Algebraic stacks, also known as Artin stacks, are by definition equipped with a smooth surjective atlas 𝒰𝒳, where 𝒰 is the stack associated to some scheme US. If the atlas 𝒰𝒳 is moreover étale, then 𝒳 is said to be a Deligne-Mumford stack. The subclass of Deligne-Mumford stacks is useful because it provides the correct setting for many natural stacks considered, such as the moduli stack of algebraic curves. In addition, they are strict enough that object represented by points in Deligne-Mumford stacks do not have infinitesimal automorphisms. This is very important because infinitesimal automorphisms make studying the deformation theory of Artin stacks very difficult. For example, the deformation theory of the Artin stack BGLn=[*/GLn], the moduli stack of rank n vector bundles, has infinitesimal automorphisms controlled partially by the Lie algebra 𝔤𝔩n. This leads to an infinite sequence of deformations and obstructions in general, which is one of the motivations for studying moduli of stable bundles. Only in the special case of the deformation theory of line bundles [*/GL1]=[*/𝔾m] is the deformation theory tractable, since the associated Lie algebra is abelian.

Note that many stacks cannot be naturally represented as Deligne-Mumford stacks because it only allows for finite covers, or, algebraic stacks with finite covers. Note that because every Etale cover is flat and locally of finite presentation, algebraic stacks defined with the fppf-topology subsume this theory; but, it is still useful since many stacks found in nature are of this form, such as the moduli of curves

g

. Also, the differential-geometric analogue of such stacks are called orbifolds. The Etale condition implies the 2-functor

Bμn:(Sch/S)opCat

sending a scheme to its groupoid of

μn

-torsors is representable as a stack over the Etale topology, but the Picard-stack

B𝔾m

of

𝔾m

-torsors (equivalently the category of line bundles) is not representable. Stacks of this form are representable as stacks over the fppf-topology. Another reason for considering the fppf-topology versus the etale topology is over characteristic

p

the Kummer sequence

0μp𝔾m𝔾m0

is exact only as a sequence of fppf sheaves, but not as a sequence of etale sheaves.

Defining algebraic stacks over other topologies

Using other Grothendieck topologies on

(F/S)

gives alternative theories of algebraic stacks which are either not general enough, or don't behave well with respect to exchanging properties from the base of a cover to the total space of a cover. It is useful to recall there is the following hierarchy of generalization

fpqcfppfsmoothetaleZariski

of big topologies on

(F/S)

.

Structure sheaf

The structure sheaf of an algebraic stack is an object pulled back from a universal structure sheaf

𝒪

on the site

(Sch/S)fppf

.[21] This universal structure sheaf[22] is defined as

𝒪:(Sch/S)fppfopRings, where U/XΓ(U,𝒪U)

and the associated structure sheaf on a category fibered in groupoids

p:𝒳(Sch/S)fppf

is defined as

𝒪𝒳:=p1𝒪

where

p1

comes from the map of Grothendieck topologies. In particular, this means is

xOb(𝒳)

lies over

U

, so

p(x)=U

, then

𝒪𝒳(x)=Γ(U,𝒪U)

. As a sanity check, it's worth comparing this to a category fibered in groupoids coming from an

S

-scheme

X

for various topologies.[23] For example, if

(𝒳Zar,𝒪𝒳)=((Sch/X)Zar,𝒪X)

is a category fibered in groupoids over

(Sch/S)fppf

, the structure sheaf for an open subscheme

UX

gives

𝒪𝒳(U)=𝒪X(U)=Γ(U,𝒪X)

so this definition recovers the classic structure sheaf on a scheme. Moreover, for a quotient stack

𝒳=[X/G]

, the structure sheaf this just gives the

G

-invariant sections

𝒪𝒳(U)=Γ(U,u*𝒪X)G

for

u:UX

in

(Sch/S)fppf

.[24][25]

Examples

Classifying stacks

Many classifying stacks for algebraic groups are algebraic stacks. In fact, for an algebraic group space G over a scheme S which is flat of finite presentation, the stack BG is algebraic[4]theorem 6.1.

See also

References

  1. A'Campo, Norbert; Ji, Lizhen; Papadopoulos, Athanase (2016-03-07). "On Grothendieck's construction of Teichmüller space". arXiv:1603.02229 [math.GT].
  2. Grothendieck, Alexander; Raynaud, Michele (2004-01-04). "Revêtements étales et groupe fondamental (SGA 1). Expose VI: Catégories fibrées et descente". arXiv:math.AG/0206203.
  3. Giraud, Jean (1971). "II. Les champs". Cohomologie non abelienne. Grundlehren der mathematischen Wissenschaften. 179. pp. 64–105. doi:10.1007/978-3-662-62103-5. ISBN 978-3-540-05307-1. 
  4. 4.0 4.1 Artin, M. (1974). "Versal deformations and algebraic stacks". Inventiones Mathematicae 27 (3): 165–189. doi:10.1007/bf01390174. ISSN 0020-9910. Bibcode1974InMat..27..165A. https://eudml.org/doc/142310. 
  5. "Section 92.16 (04T3): From an algebraic stack to a presentation—The Stacks project". https://stacks.math.columbia.edu/tag/04T3. 
  6. "Section 34.7 (021L): The fppf topology—The Stacks project". https://stacks.math.columbia.edu/tag/021L. 
  7. "Section 92.12 (026N): Algebraic stacks—The Stacks project". https://stacks.math.columbia.edu/tag/026N. 
  8. "Lemma 35.11.8 (06NB)—The Stacks project". https://stacks.math.columbia.edu/tag/06NB. 
  9. "Section 35.21 (02YL): Properties of morphisms local in the fppf topology on the target—The Stacks project". https://stacks.math.columbia.edu/tag/02YL. 
  10. "Section 35.25 (036M): Properties of morphisms local in the fppf topology on the source—The Stacks project". https://stacks.math.columbia.edu/tag/036M. 
  11. "Section 35.13 (034B): Properties of schemes local in the fppf topology—The Stacks project". https://stacks.math.columbia.edu/tag/034B. 
  12. Goerss, Paul. "Quasi-coherent sheaves on the Moduli Stack of Formal Groups". https://sites.math.northwestern.edu/~pgoerss/papers/modfg.pdf. 
  13. "Section 92.9 (04SX): Morphisms representable by algebraic spaces—The Stacks project". https://stacks.math.columbia.edu/tag/04SX. 
  14. "Section 92.7 (04SU): Split categories fibred in groupoids—The Stacks project". https://stacks.math.columbia.edu/tag/04SU. 
  15. "Section 92.8 (02ZV): Categories fibred in groupoids representable by algebraic spaces—The Stacks project". https://stacks.math.columbia.edu/tag/02ZV. 
  16. SetsCat is the embedding sending a set S to the category of objects S and only identity morphisms. Then, the Grothendieck construction can be applied to give a category fibered in groupoids
  17. "Lemma 92.10.11 (045G)—The Stacks project". https://stacks.math.columbia.edu/tag/045G. 
  18. "Section 78.5 (046I): Bootstrapping the diagonal—The Stacks project". https://stacks.math.columbia.edu/tag/046I. 
  19. Simpson, Carlos (1996-09-17). "Algebraic (geometric) n-stacks". arXiv:alg-geom/9609014.
  20. "Section 92.6 (04ST): Representable morphisms of categories fibred in groupoids—The Stacks project". https://stacks.math.columbia.edu/tag/04ST. 
  21. "Section 94.3 (06TI): Presheaves—The Stacks project". https://stacks.math.columbia.edu/tag/06TI. 
  22. "Section 94.6 (06TU): The structure sheaf—The Stacks project". https://stacks.math.columbia.edu/tag/06TU. 
  23. "Section 94.8 (076N): Representable categories—The Stacks project". https://stacks.math.columbia.edu/tag/076N. 
  24. "Lemma 94.13.2 (076S)—The Stacks project". https://stacks.math.columbia.edu/tag/076S. 
  25. "Section 76.12 (0440): Quasi-coherent sheaves on groupoids—The Stacks project". https://stacks.math.columbia.edu/tag/0440. 

Artin's Axioms

Papers

Applications

Mathoverflow threads

Other