Alexandrov theorem

From HandWiki

In mathematical analysis, the Alexandrov theorem, named after Aleksandr Danilovich Aleksandrov, states that if U is an open subset of n and f:Um is a convex function, then f has a second derivative almost everywhere. In this context, having a second derivative at a point means having a second-order Taylor expansion at that point with a local error smaller than any quadratic.

The result is closely related to Rademacher's theorem.

References