Norm (abelian group)

From HandWiki
Revision as of 23:45, 6 February 2024 by imported>Wikisleeper (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, specifically abstract algebra, if (G,+) is an (abelian) group with identity element e then ν:G is said to be a norm on (G,+) if:

  1. Positive definiteness: ν(g)>0 for all ge and ν(e)=0,
  2. Subadditivity: ν(g+h)ν(g)+ν(h),
  3. Inversion (Symmetry): ν(g)=ν(g) for all gG.[1]

An alternative, stronger definition of a norm on (G,+) requires

  1. ν(g)>0 for all ge,
  2. ν(g+h)ν(g)+ν(h),
  3. ν(mg)=|m|ν(g) for all m.[2]

The norm ν is discrete if there is some real number ρ>0 such that ν(g)>ρ whenever g0.

Free abelian groups

An abelian group is a free abelian group if and only if it has a discrete norm.[2]

References

  1. Bingham, N.H.; Ostaszewski, A.J. (2010). "Normed versus topological groups: Dichotomy and duality". Dissertationes Mathematicae 472: 4. doi:10.4064/dm472-0-1. 
  2. 2.0 2.1 Steprāns, Juris (1985), "A characterization of free abelian groups", Proceedings of the American Mathematical Society 93 (2): 347–349, doi:10.2307/2044776