Rademacher–Menchov theorem

From HandWiki
Revision as of 08:45, 9 July 2021 by imported>MedAI (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematical analysis, the Rademacher–Menchov theorem, introduced by Rademacher (1922) and Menchoff (1923), gives a sufficient condition for a series of orthogonal functions on an interval to converge almost everywhere.

Statement

If the coefficients cν of a series of bounded orthogonal functions on an interval satisfy

|cν|2log(ν)2<

then the series converges almost everywhere.

References