Multivariate random variable

From HandWiki
Revision as of 16:05, 6 February 2024 by imported>AstroAI (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Random variable with multiple component dimensions

In probability, and statistics, a multivariate random variable or random vector is a list or vector of mathematical variables each of whose value is unknown, either because the value has not yet occurred or because there is imperfect knowledge of its value. The individual variables in a random vector are grouped together because they are all part of a single mathematical system — often they represent different properties of an individual statistical unit. For example, while a given person has a specific age, height and weight, the representation of these features of an unspecified person from within a group would be a random vector. Normally each element of a random vector is a real number.

Random vectors are often used as the underlying implementation of various types of aggregate random variables, e.g. a random matrix, random tree, random sequence, stochastic process, etc.

More formally, a multivariate random variable is a column vector 𝐗=(X1,,Xn)T (or its transpose, which is a row vector) whose components are scalar-valued random variables on the same probability space as each other, (Ω,,P), where Ω is the sample space, is the sigma-algebra (the collection of all events), and P is the probability measure (a function returning each event's probability).

Probability distribution

Every random vector gives rise to a probability measure on n with the Borel algebra as the underlying sigma-algebra. This measure is also known as the joint probability distribution, the joint distribution, or the multivariate distribution of the random vector.

The distributions of each of the component random variables Xi are called marginal distributions. The conditional probability distribution of Xi given Xj is the probability distribution of Xi when Xj is known to be a particular value.

The cumulative distribution function F𝐗:n[0,1] of a random vector 𝐗=(X1,,Xn)T is defined as[1]:p.15

F𝐗(𝐱)=P(X1x1,,Xnxn)

 

 

 

 

(Eq.1)

where 𝐱=(x1,,xn)T.

Operations on random vectors

Random vectors can be subjected to the same kinds of algebraic operations as can non-random vectors: addition, subtraction, multiplication by a scalar, and the taking of inner products.

Affine transformations

Similarly, a new random vector 𝐘 can be defined by applying an affine transformation g:nn to a random vector 𝐗:

𝐘=𝐀𝐗+b, where 𝐀 is an n×n matrix and b is an n×1 column vector.

If 𝐀 is an invertible matrix and 𝐗 has a probability density function f𝐗, then the probability density of 𝐘 is

f𝐘(y)=f𝐗(𝐀1(yb))|det𝐀|.

Invertible mappings

More generally we can study invertible mappings of random vectors.[2]:p.290–291

Let g be a one-to-one mapping from an open subset 𝒟 of n onto a subset of n, let g have continuous partial derivatives in 𝒟 and let the Jacobian determinant of g be zero at no point of 𝒟. Assume that the real random vector 𝐗 has a probability density function f𝐗(𝐱) and satisfies P(𝐗𝒟)=1. Then the random vector 𝐘=g(𝐗) is of probability density

f𝐘(𝐲)=f𝐙(𝐳)|det𝐳𝐲||𝐳=g1(𝐲)𝟏(𝐲R𝐘)

where 𝟏 denotes the indicator function and set R𝐘={𝐲=g(𝐱):f𝐗(𝐱)>0} denotes support of 𝐘.

Expected value

The expected value or mean of a random vector 𝐗 is a fixed vector E[𝐗] whose elements are the expected values of the respective random variables.[3]:p.333

E[𝐗]=(E[X1],...,E[Xn])T

 

 

 

 

(Eq.2)

Covariance and cross-covariance

Definitions

The covariance matrix (also called second central moment or variance-covariance matrix) of an n×1 random vector is an n×n matrix whose (i,j)th element is the covariance between the i th and the j th random variables. The covariance matrix is the expected value, element by element, of the n×n matrix computed as [𝐗E[𝐗]][𝐗E[𝐗]]T, where the superscript T refers to the transpose of the indicated vector:[2]:p. 464[3]:p.335

K𝐗𝐗=Var[𝐗]=E[(𝐗E[𝐗])(𝐗E[𝐗])T]=E[𝐗𝐗T]E[𝐗]E[𝐗]T

 

 

 

 

(Eq.3)

By extension, the cross-covariance matrix between two random vectors 𝐗 and 𝐘 (𝐗 having n elements and 𝐘 having p elements) is the n×p matrix[3]:p.336

K𝐗𝐘=Cov[𝐗,𝐘]=E[(𝐗E[𝐗])(𝐘E[𝐘])T]=E[𝐗𝐘T]E[𝐗]E[𝐘]T

 

 

 

 

(Eq.4)

where again the matrix expectation is taken element-by-element in the matrix. Here the (i,j)th element is the covariance between the i th element of 𝐗 and the j th element of 𝐘.

Properties

The covariance matrix is a symmetric matrix, i.e.[2]:p. 466

K𝐗𝐗T=K𝐗𝐗.

The covariance matrix is a positive semidefinite matrix, i.e.[2]:p. 465

𝐚TK𝐗𝐗𝐚0for all 𝐚n.

The cross-covariance matrix Cov[𝐘,𝐗] is simply the transpose of the matrix Cov[𝐗,𝐘], i.e.

K𝐘𝐗=K𝐗𝐘T.

Uncorrelatedness

Two random vectors 𝐗=(X1,...,Xm)T and 𝐘=(Y1,...,Yn)T are called uncorrelated if

E[𝐗𝐘T]=E[𝐗]E[𝐘]T.

They are uncorrelated if and only if their cross-covariance matrix K𝐗𝐘 is zero.[3]:p.337

Correlation and cross-correlation

Definitions

The correlation matrix (also called second moment) of an n×1 random vector is an n×n matrix whose (i,j)th element is the correlation between the i th and the j th random variables. The correlation matrix is the expected value, element by element, of the n×n matrix computed as 𝐗𝐗T, where the superscript T refers to the transpose of the indicated vector:[4]:p.190[3]:p.334

R𝐗𝐗=E[𝐗𝐗T]

 

 

 

 

(Eq.5)

By extension, the cross-correlation matrix between two random vectors 𝐗 and 𝐘 (𝐗 having n elements and 𝐘 having p elements) is the n×p matrix

R𝐗𝐘=E[𝐗𝐘T]

 

 

 

 

(Eq.6)

Properties

The correlation matrix is related to the covariance matrix by

R𝐗𝐗=K𝐗𝐗+E[𝐗]E[𝐗]T.

Similarly for the cross-correlation matrix and the cross-covariance matrix:

R𝐗𝐘=K𝐗𝐘+E[𝐗]E[𝐘]T

Orthogonality

Two random vectors of the same size 𝐗=(X1,...,Xn)T and 𝐘=(Y1,...,Yn)T are called orthogonal if

E[𝐗T𝐘]=0.

Independence

Main page: Independence (probability theory)

Two random vectors 𝐗 and 𝐘 are called independent if for all 𝐱 and 𝐲

F𝐗,𝐘(𝐱,𝐲)=F𝐗(𝐱)F𝐘(𝐲)

where F𝐗(𝐱) and F𝐘(𝐲) denote the cumulative distribution functions of 𝐗 and 𝐘 andF𝐗,𝐘(𝐱,𝐲) denotes their joint cumulative distribution function. Independence of 𝐗 and 𝐘 is often denoted by 𝐗𝐘. Written component-wise, 𝐗 and 𝐘 are called independent if for all x1,,xm,y1,,yn

FX1,,Xm,Y1,,Yn(x1,,xm,y1,,yn)=FX1,,Xm(x1,,xm)FY1,,Yn(y1,,yn).

Characteristic function

The characteristic function of a random vector 𝐗 with n components is a function n that maps every vector ω=(ω1,,ωn)T to a complex number. It is defined by[2]:p. 468

φ𝐗(ω)=E[ei(ωT𝐗)]=E[ei(ω1X1++ωnXn)].

Further properties

Expectation of a quadratic form

One can take the expectation of a quadratic form in the random vector 𝐗 as follows:[5]:p.170–171

E[𝐗TA𝐗]=E[𝐗]TAE[𝐗]+tr(AK𝐗𝐗),

where K𝐗𝐗 is the covariance matrix of 𝐗 and tr refers to the trace of a matrix — that is, to the sum of the elements on its main diagonal (from upper left to lower right). Since the quadratic form is a scalar, so is its expectation.

Proof: Let 𝐳 be an m×1 random vector with E[𝐳]=μ and Cov[𝐳]=V and let A be an m×m non-stochastic matrix.

Then based on the formula for the covariance, if we denote 𝐳T=𝐗 and 𝐳TAT=𝐘, we see that:

Cov[𝐗,𝐘]=E[𝐗𝐘T]E[𝐗]E[𝐘]T

Hence

E[XYT]=Cov[X,Y]+E[X]E[Y]TE[zTAz]=Cov[zT,zTAT]+E[zT]E[zTAT]T=Cov[zT,zTAT]+μT(μTAT)T=Cov[zT,zTAT]+μTAμ,

which leaves us to show that

Cov[zT,zTAT]=tr(AV).

This is true based on the fact that one can cyclically permute matrices when taking a trace without changing the end result (e.g.: tr(AB)=tr(BA)).

We see that

Cov[zT,zTAT]=E[(zTE(zT))(zTATE(zTAT))T]=E[(zTμT)(zTATμTAT)T]=E[(zμ)T(AzAμ)].

And since

(zμ)T(AzAμ)

is a scalar, then

(zμ)T(AzAμ)=tr((zμ)T(AzAμ))=tr((zμ)TA(zμ))

trivially. Using the permutation we get:

tr((zμ)TA(zμ))=tr(A(zμ)(zμ)T),

and by plugging this into the original formula we get:

Cov[zT,zTAT]=E[(zμ)T(AzAμ)]=E[tr(A(zμ)(zμ)T)]=tr(AE((zμ)(zμ)T))=tr(AV).

Expectation of the product of two different quadratic forms

One can take the expectation of the product of two different quadratic forms in a zero-mean Gaussian random vector 𝐗 as follows:[5]:pp. 162–176

E[(𝐗TA𝐗)(𝐗TB𝐗)]=2tr(AK𝐗𝐗BK𝐗𝐗)+tr(AK𝐗𝐗)tr(BK𝐗𝐗)

where again K𝐗𝐗 is the covariance matrix of 𝐗. Again, since both quadratic forms are scalars and hence their product is a scalar, the expectation of their product is also a scalar.

Applications

Portfolio theory

In portfolio theory in finance, an objective often is to choose a portfolio of risky assets such that the distribution of the random portfolio return has desirable properties. For example, one might want to choose the portfolio return having the lowest variance for a given expected value. Here the random vector is the vector 𝐫 of random returns on the individual assets, and the portfolio return p (a random scalar) is the inner product of the vector of random returns with a vector w of portfolio weights — the fractions of the portfolio placed in the respective assets. Since p = wT𝐫, the expected value of the portfolio return is wTE(𝐫) and the variance of the portfolio return can be shown to be wTCw, where C is the covariance matrix of 𝐫.

Regression theory

In linear regression theory, we have data on n observations on a dependent variable y and n observations on each of k independent variables xj. The observations on the dependent variable are stacked into a column vector y; the observations on each independent variable are also stacked into column vectors, and these latter column vectors are combined into a design matrix X (not denoting a random vector in this context) of observations on the independent variables. Then the following regression equation is postulated as a description of the process that generated the data:

y=Xβ+e,

where β is a postulated fixed but unknown vector of k response coefficients, and e is an unknown random vector reflecting random influences on the dependent variable. By some chosen technique such as ordinary least squares, a vector β^ is chosen as an estimate of β, and the estimate of the vector e, denoted e^, is computed as

e^=yXβ^.

Then the statistician must analyze the properties of β^ and e^, which are viewed as random vectors since a randomly different selection of n cases to observe would have resulted in different values for them.

Vector time series

The evolution of a k×1 random vector 𝐗 through time can be modelled as a vector autoregression (VAR) as follows:

𝐗t=c+A1𝐗t1+A2𝐗t2++Ap𝐗tp+𝐞t,

where the i-periods-back vector observation 𝐗ti is called the i-th lag of 𝐗, c is a k × 1 vector of constants (intercepts), Ai is a time-invariant k × k matrix and 𝐞t is a k × 1 random vector of error terms.

References

  1. Gallager, Robert G. (2013). Stochastic Processes Theory for Applications. Cambridge University Press. ISBN 978-1-107-03975-9. 
  2. 2.0 2.1 2.2 2.3 2.4 Lapidoth, Amos (2009). A Foundation in Digital Communication. Cambridge University Press. ISBN 978-0-521-19395-5. 
  3. 3.0 3.1 3.2 3.3 3.4 Gubner, John A. (2006). Probability and Random Processes for Electrical and Computer Engineers. Cambridge University Press. ISBN 978-0-521-86470-1. 
  4. Papoulis, Athanasius (1991). Probability, Random Variables and Stochastic Processes (Third ed.). McGraw-Hill. ISBN 0-07-048477-5. 
  5. 5.0 5.1 Kendrick, David (1981). Stochastic Control for Economic Models. McGraw-Hill. ISBN 0-07-033962-7. 

Further reading

  • Stark, Henry; Woods, John W. (2012). "Random Vectors". Probability, Statistics, and Random Processes for Engineers (Fourth ed.). Pearson. pp. 295–339. ISBN 978-0-13-231123-6. 

de:Zufallsvariable#Mehrdimensionale Zufallsvariable pl:Zmienna losowa#Uogólnienia