Markov brothers' inequality

From HandWiki
Revision as of 08:56, 29 October 2022 by imported>SpringEdit (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, the Markov brothers' inequality is an inequality proved in the 1890s by brothers Andrey Markov and Vladimir Markov, two Russian mathematicians. This inequality bounds the maximum of the derivatives of a polynomial on an interval in terms of the maximum of the polynomial.[1] For k = 1 it was proved by Andrey Markov,[2] and for k = 2,3,... by his brother Vladimir Markov.[3]

The statement

Let P be a polynomial of degree ≤ n. Then for all nonnegative integers k

max1x1|P(k)(x)|n2(n212)(n222)(n2(k1)2)135(2k1)max1x1|P(x)|.

Equality is attained for Chebyshev polynomials of the first kind.

Applications

Markov's inequality is used to obtain lower bounds in computational complexity theory via the so-called "Polynomial Method".

References

  1. Achiezer, N.I. (1992). Theory of approximation. New York: Dover Publications, Inc.. 
  2. Markov, A.A. (1890). "On a question by D. I. Mendeleev". Zap. Imp. Akad. Nauk. St. Petersburg 62: 1–24. 
  3. Markov, V.A. (1892). О функциях, наименее уклоняющихся от нуля в данном промежутке (On Functions of Least Deviation from Zero in a Given Interval).  Appeared in German with a foreword by Sergei Bernstein as Markov, V.A. (1916). "Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen". Math. Ann. 77 (2): 213–258. doi:10.1007/bf01456902. https://zenodo.org/record/1428284.