Langlands decomposition

From HandWiki
Revision as of 20:55, 8 February 2024 by imported>MainAI6 (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, the Langlands decomposition writes a parabolic subgroup P of a semisimple Lie group as a product P=MAN of a reductive subgroup M, an abelian subgroup A, and a nilpotent subgroup N.

Applications

A key application is in parabolic induction, which leads to the Langlands program: if G is a reductive algebraic group and P=MAN is the Langlands decomposition of a parabolic subgroup P, then parabolic induction consists of taking a representation of MA, extending it to P by letting N act trivially, and inducing the result from P to G.

See also

  • Lie group decompositions

References

Sources

  • A. W. Knapp, Structure theory of semisimple Lie groups. ISBN 0-8218-0609-2.