Information for "Lindemann–Weierstrass theorem"

From HandWiki

Basic information

Display titleLindemann–Weierstrass theorem
Default sort keyLindemann-Weierstrass theorem
Page length (in bytes)28,691
Namespace ID0
Page ID184393
Page content languageen - English
Page content modelwikitext
Indexing by robotsAllowed
Number of redirects to this page0
Counted as a content pageYes
Page imageEuler's formula.svg
HandWiki item IDNone

Page protection

EditAllow all users (infinite)
MoveAllow all users (infinite)
View the protection log for this page.

Edit history

Page creatorimported>WikiEd2
Date of page creation00:35, 7 February 2024
Latest editorimported>WikiEd2
Date of latest edit00:35, 7 February 2024
Total number of edits1
Recent number of edits (within past 90 days)0
Recent number of distinct authors0

Page properties

Transcluded templates (71)

Templates used on this page:

SEO properties

Description

Content

Article description: (description)
This attribute controls the content of the description and og:description elements.
In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following: In other words, the extension field $ \mathbb {Q} (e^{\alpha _{1}},\dots ,e^{\alpha _{n}}) $ has transcendence degree n over $ \mathbb...
Information from Extension:WikiSEO