Information for "Lebesgue's number lemma"

From HandWiki

Basic information

Display titleLebesgue's number lemma
Default sort keyLebesgue's Number Lemma
Page length (in bytes)5,646
Namespace ID0
Page ID216441
Page content languageen - English
Page content modelwikitext
Indexing by robotsAllowed
Number of redirects to this page0
Counted as a content pageYes
HandWiki item IDNone

Page protection

EditAllow all users (infinite)
MoveAllow all users (infinite)
View the protection log for this page.

Edit history

Page creatorimported>John Stpola
Date of page creation19:58, 6 February 2024
Latest editorimported>John Stpola
Date of latest edit19:58, 6 February 2024
Total number of edits1
Recent number of edits (within past 90 days)0
Recent number of distinct authors0

Page properties

Transcluded templates (14)

Templates used on this page:

SEO properties

Description

Content

Article description: (description)
This attribute controls the content of the description and og:description elements.
In topology, Lebesgue's number lemma, named after Henri Lebesgue, is a useful tool in the study of compact metric spaces. It states: If the metric space $ (X,d) $ is compact and an open cover of $ X $ is given, then there exists a number $ \delta >0 $ such that every subset of $ X $ having diameter...
Information from Extension:WikiSEO