Display title | Double coset |
Default sort key | Double coset |
Page length (in bytes) | 21,238 |
Namespace ID | 0 |
Page ID | 175903 |
Page content language | en - English |
Page content model | wikitext |
Indexing by robots | Allowed |
Number of redirects to this page | 0 |
Counted as a content page | Yes |
HandWiki item ID | None |
Edit | Allow all users (infinite) |
Move | Allow all users (infinite) |
Page creator | imported>JTerm |
Date of page creation | 06:38, 27 June 2023 |
Latest editor | imported>JTerm |
Date of latest edit | 06:38, 27 June 2023 |
Total number of edits | 1 |
Recent number of edits (within past 90 days) | 0 |
Recent number of distinct authors | 0 |
Description | Content |
Article description: (description ) This attribute controls the content of the description and og:description elements. | In group theory, a field of mathematics, a double coset is a collection of group elements which are equivalent under the symmetries coming from two subgroups. More precisely, let G be a group, and let H and K be subgroups. Let H act on G by left multiplication and let K act on G by right multiplication... |