Display title | Domain (ring theory) |
Default sort key | Domain (Ring Theory) |
Page length (in bytes) | 6,549 |
Namespace ID | 0 |
Page ID | 217116 |
Page content language | en - English |
Page content model | wikitext |
Indexing by robots | Allowed |
Number of redirects to this page | 0 |
Counted as a content page | Yes |
HandWiki item ID | None |
Edit | Allow all users (infinite) |
Move | Allow all users (infinite) |
Page creator | imported>John Stpola |
Date of page creation | 07:37, 27 June 2023 |
Latest editor | imported>John Stpola |
Date of latest edit | 07:37, 27 June 2023 |
Total number of edits | 1 |
Recent number of edits (within past 90 days) | 0 |
Recent number of distinct authors | 0 |
Description | Content |
Article description: (description ) This attribute controls the content of the description and og:description elements. | In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. (Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called... |