Display title | Correlation integral |
Default sort key | Correlation integral |
Page length (in bytes) | 1,760 |
Namespace ID | 0 |
Page ID | 205750 |
Page content language | en - English |
Page content model | wikitext |
Indexing by robots | Allowed |
Number of redirects to this page | 0 |
Counted as a content page | Yes |
HandWiki item ID | None |
Edit | Allow all users (infinite) |
Move | Allow all users (infinite) |
Page creator | imported>Nautica |
Date of page creation | 21:34, 6 March 2023 |
Latest editor | imported>Nautica |
Date of latest edit | 21:34, 6 March 2023 |
Total number of edits | 1 |
Recent number of edits (within past 90 days) | 0 |
Recent number of distinct authors | 0 |
Description | Content |
Article description: (description ) This attribute controls the content of the description and og:description elements. | In chaos theory, the correlation integral is the mean probability that the states at two different times are close:
$ C(\varepsilon )=\lim _{N\rightarrow \infty }{\frac {1}{N^{2}}}\sum _{\stackrel {i,j=1}{i\neq j}}^{N}\Theta (\varepsilon -\|{\vec {x}}(i)-{\vec {x}}(j)\|),\quad {\vec {x}}(i)\in \mathbb... |