Hotelling's T-squared distribution

From HandWiki
Short description: Type of probability distribution


Hotelling's T2 distribution
Probability density function
Cumulative distribution function
Parameters p - dimension of the random variables
m - related to the sample size
Support x(0,+) if p=1
x[0,+) otherwise.

In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T2), proposed by Harold Hotelling,[1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution. The Hotelling's t-squared statistic (t2) is a generalization of Student's t-statistic that is used in multivariate hypothesis testing.[2]

Motivation

The distribution arises in multivariate statistics in undertaking tests of the differences between the (multivariate) means of different populations, where tests for univariate problems would make use of a t-test. The distribution is named for Harold Hotelling, who developed it as a generalization of Student's t-distribution.[1]

Definition

If the vector d is Gaussian multivariate-distributed with zero mean and unit covariance matrix N(𝟎p,𝐈p,p) and M is a p×p matrix with unit scale matrix and m degrees of freedom with a Wishart distribution W(𝐈p,p,m), then the quadratic form X has a Hotelling distribution (with parameters p and m):[3]

X=mdTM1dT2(p,m).

Furthermore, if a random variable X has Hotelling's T-squared distribution, XTp,m2, then:[1]

mp+1pmXFp,mp+1

where Fp,mp+1 is the F-distribution with parameters p and m−p+1.

Hotelling t-squared statistic

Let Σ^ be the sample covariance:

Σ^=1n1i=1n(𝐱i𝐱)(𝐱i𝐱)

where we denote transpose by an apostrophe. It can be shown that Σ^ is a positive (semi) definite matrix and (n1)Σ^ follows a p-variate Wishart distribution with n−1 degrees of freedom.[4] The sample covariance matrix of the mean reads Σ^𝐱=Σ^/n.

The Hotelling's t-squared statistic is then defined as:[5]

t2=(𝐱μ)Σ^𝐱1(𝐱μ),

which is proportional to the distance between the sample mean and μ. Because of this, one should expect the statistic to assume low values if 𝐱μ, and high values if they are different.

From the distribution,

t2Tp,n12=p(n1)npFp,np,

where Fp,np is the F-distribution with parameters p and n − p.

In order to calculate a p-value (unrelated to p variable here), note that the distribution of t2 equivalently implies that

npp(n1)t2Fp,np.

Then, use the quantity on the left hand side to evaluate the p-value corresponding to the sample, which comes from the F-distribution. A confidence region may also be determined using similar logic.

Motivation

Let 𝒩p(μ,Σ) denote a p-variate normal distribution with location μ and known covariance Σ. Let

𝐱1,,𝐱n𝒩p(μ,Σ)

be n independent identically distributed (iid) random variables, which may be represented as p×1 column vectors of real numbers. Define

𝐱=𝐱1++𝐱nn

to be the sample mean with covariance Σ𝐱=Σ/n. It can be shown that

(𝐱μ)Σ𝐱1(𝐱μ)χp2,

where χp2 is the chi-squared distribution with p degrees of freedom.[6]

Proof

Two-sample statistic

If 𝐱1,,𝐱nxNp(μ,Σ) and 𝐲1,,𝐲nyNp(μ,Σ), with the samples independently drawn from two independent multivariate normal distributions with the same mean and covariance, and we define

𝐱=1nxi=1nx𝐱i𝐲=1nyi=1ny𝐲i

as the sample means, and

Σ^𝐱=1nx1i=1nx(𝐱i𝐱)(𝐱i𝐱)
Σ^𝐲=1ny1i=1ny(𝐲i𝐲)(𝐲i𝐲)

as the respective sample covariance matrices. Then

Σ^=(nx1)Σ^𝐱+(ny1)Σ^𝐲nx+ny2

is the unbiased pooled covariance matrix estimate (an extension of pooled variance).

Finally, the Hotelling's two-sample t-squared statistic is

t2=nxnynx+ny(𝐱𝐲)Σ^1(𝐱𝐲)T2(p,nx+ny2)

It can be related to the F-distribution by[4]

nx+nyp1(nx+ny2)pt2F(p,nx+ny1p).

The non-null distribution of this statistic is the noncentral F-distribution (the ratio of a non-central Chi-squared random variable and an independent central Chi-squared random variable)

nx+nyp1(nx+ny2)pt2F(p,nx+ny1p;δ),

with

δ=nxnynx+nydΣ1d,

where d=xy is the difference vector between the population means.

In the two-variable case, the formula simplifies nicely allowing appreciation of how the correlation, ρ, between the variables affects t2. If we define

d1=x1y1,d2=x2y2

and

s1=Σ11s2=Σ22ρ=Σ12/(s1s2)=Σ21/(s1s2)

then

t2=nxny(nx+ny)(1r2)[(d1s1)2+(d2s2)22ρ(d1s1)(d2s2)]

Thus, if the differences in the two rows of the vector 𝐝=𝐱𝐲 are of the same sign, in general, t2 becomes smaller as ρ becomes more positive. If the differences are of opposite sign t2 becomes larger as ρ becomes more positive.

A univariate special case can be found in Welch's t-test.

More robust and powerful tests than Hotelling's two-sample test have been proposed in the literature, see for example the interpoint distance based tests which can be applied also when the number of variables is comparable with, or even larger than, the number of subjects.[8][9]

See also

References

  1. 1.0 1.1 1.2 "The generalization of Student's ratio". Annals of Mathematical Statistics 2 (3): 360–378. 1931. doi:10.1214/aoms/1177732979. 
  2. Johnson, R.A.; Wichern, D.W. (2002). Applied multivariate statistical analysis. 5. Prentice hall. 
  3. Eric W. Weisstein, MathWorld
  4. 4.0 4.1 Mardia, K. V.; Kent, J. T.; Bibby, J. M. (1979). Multivariate Analysis. Academic Press. ISBN 978-0-12-471250-8. 
  5. "6.5.4.3. Hotelling's T squared". http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc543.htm. 
  6. End of chapter 4.2 of Johnson, R.A. & Wichern, D.W. (2002)
  7. Billingsley, P. (1995). "26. Characteristic Functions". Probability and measure (3rd ed.). Wiley. ISBN 978-0-471-00710-4. 
  8. Marozzi, M. (2016). "Multivariate tests based on interpoint distances with application to magnetic resonance imaging". Statistical Methods in Medical Research 25 (6): 2593–2610. doi:10.1177/0962280214529104. PMID 24740998. 
  9. Marozzi, M. (2015). "Multivariate multidistance tests for high-dimensional low sample size case-control studies". Statistics in Medicine 34 (9): 1511–1526. doi:10.1002/sim.6418. PMID 25630579.